scholarly journals Neuroglobin, A Novel Member of the Globin Family, Is Expressed in Focal Regions of the Brain

2002 ◽  
Vol 50 (12) ◽  
pp. 1591-1598 ◽  
Author(s):  
Pradeep P.A. Mammen ◽  
John M. Shelton ◽  
Sean C. Goetsch ◽  
S. Clay Williams ◽  
James A. Richardson ◽  
...  

Hemoproteins are widely distributed among unicellular eukaryotes, plants, and animals. In addition to myoglobin and hemoglobin, a third hemoprotein, neuroglobin, has recently been isolated from vertebrate brain. Although the functional role of this novel member of the globin family remains unclear, neuroglobin contains a heme-binding domain and may participate in diverse processes such as oxygen transport, oxygen storage, nitric oxide detoxification, or modulation of terminal oxidase activity. In this study we utilized in situ hybridization (ISH) and RT-PCR analyses to examine the expression of neuroglobin in the normoxic and hypoxic murine brain. In the normoxic adult mouse, neuroglobin expression was observed in focal regions of the brain, including the lateral tegmental nuclei, the preoptic nucleus, amygdala, locus coeruleus, and nucleus of the solitary tract. Using ISH and RT-PCR techniques, no significant changes in neuroglobin expression in the adult murine brain was observed in response to chronic 10% oxygen. These results support the hypothesis that neuroglobin is a hemoprotein that is expressed in the brain and may have diverse functional roles.

Viruses ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 530 ◽  
Author(s):  
Guendalina Zaccaria ◽  
Alessio Lorusso ◽  
Melanie M. Hierweger ◽  
Daniela Malatesta ◽  
Sabrina VP Defourny ◽  
...  

In this study, starting from nucleic acids purified from the brain tissue, Nanopore technology was used to identify the etiological agent of severe neurological signs observed in a cow which was immediately slaughtered. Histological examination revealed acute non-suppurative encephalomyelitis affecting the brainstem, cerebrum, cerebellum, and medulla oblongata, while by using PCR-based assays, the nucleic acids of major agents for neurological signs were not detected. By using Nanopore technology, 151 sequence reads were assigned to Bovine Astrovirus (BoAstV). Real-time RT-PCR and in situ hybridization (ISH) confirmed the presence of viral RNA in the brain. Moreover, using the combination of fluorescent ISH and immunofluorescence (IF) techniques, it was possible to detect BoAstV RNA and antigens in the same cells, suggesting the active replication of the virus in infected neurons. The nearly whole genome of the occurring strain (BoAstV PE3373/2019/Italy), obtained by Illumina NextSeq 500, showed the highest nucleotide sequence identity (94.11%) with BoAstV CH13/NeuroS1 26,730 strain, an encephalitis-associated bovine astrovirus. Here, we provide further evidence of the role of AstV as a neurotropic agent. Considering that in a high proportion of non-suppurative encephalitis cases, which are mostly indicative of a viral infection, the etiologic agent remains unknown, our result underscores the value and versatility of Nanopore technology for a rapid diagnosis when the PCR-based algorithm gives negative results.


Endocrinology ◽  
2011 ◽  
Vol 152 (6) ◽  
pp. 2330-2341 ◽  
Author(s):  
Caroline Parmentier ◽  
Emilie Hameury ◽  
Christophe Dubessy ◽  
Feng B. Quan ◽  
Damien Habert ◽  
...  

The urotensin II (UII) family is currently known to consist of two paralogous peptides, namely UII and UII-related peptide (URP). In contrast to UII, which has been identified in all vertebrate classes so far, URP has only been characterized in tetrapods. We report here the occurrence of two distinct URP genes in teleosts, which we have named URP1 and URP2. Synteny analysis revealed that teleost URP1 and URP2 genes and tetrapod URP genes represent three distinct paralog genes that, together with the UII gene, probably arose from the two rounds of tetraploidization, which took place early in vertebrate evolution. The absence of URP in fish indicates that the corresponding gene has been lost in the teleost lineage, whereas it is likely that both the URP1 and URP2 genes have been lost in the tetrapod lineage. Quantitative RT-PCR analysis revealed that the URP2 gene is mainly expressed in the spinal cord and the brain in adult zebrafish. In situ hybridization experiments showed that in zebrafish embryos, URP2 mRNA-containing cells are located in the floor plate of the neural tube. In adult, URP2-expressing cells occur in close contact with the ventral side of the ependymal canal along the whole spinal cord, whereas in the brain, they are located below the fourth ventricle. These URP-expressing cells may correspond to cerebrospinal fluid-contacting neurons. In conclusion, our study reveals the occurrence of four distinct UII paralogous systems in vertebrates that may exert distinct functions, both in tetrapods and teleosts.


Author(s):  

Laser in-situ keratomieleusis (LASIK) is a common intervention for young, active, ametropic individuals to improve their visual acuity. pseudo-accommodative cornea (PAC), a variant of LASIK, to correct ametropia among presbyopic patients is proven in maintaining good distant vision; yet, the satisfactory spectacle free reading vision is limited to the ageing progression. However, successful treatments do not guarantee patient’s satisfaction. Assesment of the objective topographic indicators, visual acuity, higher order abrasion, and contrast sensitivity; revealed the clarification of a mild headache as a personal subjective experience after the treatment. The role of the persistent, dominant eye, the brain perception, seems to be critical factor to a patient’s satisfaction. To a certain degree, the interplay amongst the optical part and it’s supporting tissue, within and between the eyeballs, as well as its relationship to the neurosensory parts of the visual systems after Lasik surgery have not yet been assessed and reported elsewhere.


2014 ◽  
Vol 34 (suppl_1) ◽  
Author(s):  
Fatiha Tabet ◽  
Sandy Lee ◽  
Luisa F Cuesta Torres ◽  
Michael G Levin ◽  
Grant R Drummond ◽  
...  

Background: Stroke is a major neurovascular disease and a leading cause of mortality and long-term disability. Within cells of the brain, short non-encoding microRNAs (miRNAs) serve to modulate gene expression and likely contribute to most, neurological processes. However, miRNA changes in the brain tissue in response to stroke have not been reported. Aim: To investigate the functional roles of brain miRNAs and gene regulatory networks in stroke injury. Methods: Adult (8-12 weeks old) male C57Bl/6 mice underwent intraluminal filament-induced middle cerebral artery (MCA) occlusion. Permanent ischemia (ischemia no reperfusion, InoR; n=8) was achieved by occlusion for 24 h, and ischemia with reperfusion (IR; n=8) was completed after 30 min of MCA followed by 23.5 h of reperfusion. Sham-operated mice (n=8) were used as controls. Total RNA was isolated from mouse brains and gene arrays (Affymetrix) and miRNA arrays (TaqMan OpenArray microRNA) were performed. Validation studies were performed using RT-PCR and TaqMan Individual Assays. Results: Relative to the sham-operated mice, InoR significantly altered (p≤0.05; fold-change≥1.5) the levels of 471 genes (mRNA) in the brain. By contrast, IR resulted in only 114 significant changes in gene expression after 24 h. Brain miRNAs were also very sensitive to both ischemia and reperfusion. 28 miRNAs (11 down, 17 up) were significantly altered by InoR compared to the sham procedure. Likewise, 12 miRNAs (3 down, 9 up) were significantly altered with reperfusion compared to the sham procedure. Interestingly, we found 10 miRNAs to be significantly altered (5 up, 5 down) with ischemia (InoR/Sham), but were also significantly corrected towards normal Sham levels by 23.5 h reperfusion (IR/InoR). Validation studies confirmed that levels of multiple miRNAs were significantly altered with InoR. Reperfusion increased the levels of all these miRNAs. 48% (327/680) of the mRNAs that were altered were predicted targets of significantly altered miRNAs, and our results showed inverse directional changes. Conclusion: Results from our study show the role of miRNAs and post-transcriptional circuits in both adaptive and maladaptive responses to ischemic stroke and reperfusion.


Author(s):  
Matteo Dal Ferro ◽  
Rossana Bussani ◽  
Alessia Paldino ◽  
Vincenzo Nuzzi ◽  
Chiara Collesi ◽  
...  

Abstract Objective Despite growing evidence about myocardial injury in hospitalized COronaVIrus Disease 2019 (COVID-19) patients, the mechanism behind this injury is only poorly understood and little is known about its association with SARS-CoV-2-mediated myocarditis. Furthermore, definite evidence of the presence and role of SARS-CoV-2 in cardiomyocytes in the clinical scenario is still lacking. Methods We histologically characterized myocardial tissue of 40 patients deceased with severe SARS-CoV-2 infection during the first wave of the pandemic. Clinical data were also recorded and analyzed. In case of findings supportive of myocardial inflammation, histological analysis was complemented by RT-PCR and immunohistochemistry for SARS-CoV-2 viral antigens and in situ RNA hybridization for the detection of viral genomes. Results Both chronic and acute myocardial damage was invariably present, correlating with the age and comorbidities of our population. Myocarditis of overt entity was found in one case (2.5%). SARS-CoV-2 genome was not found in the cardiomyocytes of the patient with myocarditis, while it was focally and negligibly present in cardiomyocytes of patients with known viral persistence in the lungs and no signs of myocardial inflammation. The presence of myocardial injury was not associated with myocardial inflammatory infiltrates. Conclusions In this autopsy cohort of COVID-19 patients, myocarditis is rarely found and not associated with SARS-CoV-2 presence in cardiomyocytes. Chronic and acute forms of myocardial damage are constantly found and correlate with the severity of COVID-19 disease and pre-existing comorbidities. Graphic abstract


Beverages ◽  
2019 ◽  
Vol 5 (1) ◽  
pp. 16 ◽  
Author(s):  
Valery Ripari

This review describes the technical and functional role of exopolysaccharides (EPSs) in cereal-based, yogurt-like beverages. Many microorganisms produce EPSs as a strategy for growing, adhering to solid surfaces, and surviving under adverse conditions. In several food and beverages, EPSs play technical and functional roles. Therefore, EPSs can be isolated, purified, and added to the product, or appropriate bacteria can be employed as starter cultures to produce the EPSs in situ within the matrix. The exploitation of in situ production of EPSs is of particular interest to manufacturers of cereal-base beverages aiming to mimic dairy products. In this review, traditional and innovative or experimental cereal-based beverages, and in particular, yogurt-like beverages are described with a particular focus in lactic acid bacteria (LAB’s) EPS production. The aim of this review is to present an overview of the current knowledge of exopolysaccharides produced by lactic acid bacteria, and their presence in cereal-based, yogurt-like beverages.


2021 ◽  
Vol 22 (21) ◽  
pp. 11883
Author(s):  
Yun-Mi Jeong ◽  
Jae-Geun Lee ◽  
Hyun-Ju Cho ◽  
Wang Sik Lee ◽  
Jinyoung Jeong ◽  
...  

The failure of amyloid beta (Aβ) clearance is a major cause of Alzheimer’s disease, and the brain lymphatic systems play a crucial role in clearing toxic proteins. Recently, brain lymphatic endothelial cells (BLECs), a non-lumenized lymphatic cell in the vertebrate brain, was identified, but Aβ clearance via this novel cell is not fully understood. We established an in vivo zebrafish model using fluorescently labeled Aβ42 to investigate the role of BLECs in Aβ clearance. We discovered the efficient clearance of monomeric Aβ42 (mAβ42) compared to oligomeric Aβ42 (oAβ42), which was illustrated by the selective uptake of mAβ42 by BLECs and peripheral transport. The genetic depletion, pharmacological inhibition via the blocking of the mannose receptor, or the laser ablation of BLECs resulted in the defective clearance of mAβ42. The treatment with an Aβ disaggregating agent facilitated the internalization of oAβ42 into BLECs and improved the peripheral transport. Our findings reveal a new role of BLECs in the differential clearance of mAβ42 from the brain and provide a novel therapeutic strategy based on promoting Aβ clearance.


2021 ◽  
Author(s):  
Amy Cheung ◽  
Aya Matsui ◽  
Manabu Abe ◽  
Kenji Sakimura ◽  
Toshikuni Sasaoka ◽  
...  

Extensive serotonin (5-HT) innervation throughout the brain corroborates 5-HT’s modulatory role in numerous cognitive activities. Volume transmission is the major mode for 5-HT transmission but mechanisms underlying 5-HT signaling are still largely unknown. Abnormal brain 5-HT levels and function have been implicated in autism spectrum disorder (ASD). Neurexin (Nrxn) genes encode presynaptic cell adhesion molecules important for the regulation of synaptic neurotransmitter release, notably glutamatergic and GABAergic transmission. Mutations in Nrxn genes are associated with neurodevelopmental disorders including ASD. However, the role of Nrxn genes in the 5-HT system is poorly understood. Here, we generated a mouse model with all three Nrxn genes disrupted specifically in 5-HT neurons to study how Nrxns affect 5-HT transmission. Loss of Nrxns in 5-HT neurons impaired 5-HT release in the dorsal raphe nucleus and dorsal hippocampus and decreased serotonin transporter distribution in specific brain areas. Furthermore, 5-HT neuron-specific Nrxn knockout reduced sociability and increased depressive-like behavior. Our results highlight functional roles for Nrxns in 5-HT neurotransmission and the execution of complex behaviors.


2021 ◽  
Vol 48 (2) ◽  
Author(s):  
Videsha Bansal ◽  
◽  
Indranath Chatterjee ◽  

Schizophrenia is a psychological disorder, way tougher to diagnose than other psychological disorders, as it shares similar symptoms with psychosis. As we know, schizophrenia occurs due to chemical imbalance in the brain; identifying the role of neurotransmitters in schizophrenia poses a vital area to study. Neurotransmitters being the sole carrier of different brain activities, researchers have already initiated studies to investigate their role and effect in disorder. Firstly, this paper performs a critical review of the literature that dealt with different neurotransmitters in schizophrenia. Secondly, we identify the most important neurotransmitters and broadly elaborate on their functional roles and effects on the disorder. Finally, we have successfully identified various gaps and unexplored research questions to investigate these neurochemicals' role. Studies show that neurotransmitters like dopamine, glutamate, GABA, serotonin, and oxytocin are majorly responsible for schizophrenia, among which dopamine contributes the most. To the best of our knowledge, this paper encapsulates all the neurotransmitters, enzymes, and chemicals for the first time and explores their related literature. This study also identifies the most responsible chemicals involved in schizophrenia and unfolds the research community's unsolved problem.


Sign in / Sign up

Export Citation Format

Share Document