scholarly journals Non-isolated high step-up DC/DC power converter with coupled-inductor

2021 ◽  
Vol 104 (3_suppl) ◽  
pp. 003685042110270
Author(s):  
Van-Tsai Liu ◽  
Kuo-Ching Tseng ◽  
Yue-Han Wu

This paper presents a non-isolated single switch converter with high voltage gain. Its circuit topology is combined with coupled-inductor, clamp circuit, and voltage lift capacitor techniques. The proposed converter has several advantages: First, the circuit is controlled by only single pulse width modulation (PWM) for the power switch, which keeps the circuit simple. Secondly, the proposed converter is used as a clamping circuit,which let the energy of the leakage inductance can be circulated to the capacitor, so that the voltage spike on the active switch can be suppressed, and improves efficiency. This paper will introduce the principle of action, theoretical analysis, and experimental waveform in order. Finally, in the case of input voltage of 48 V, output voltage of 400 V, and output power of 1 kW, the performance of the proposed converter is verified. As a result, the maximum efficiency is up to 96.5% and full load efficiency is 92.3%.

2013 ◽  
Vol 479-480 ◽  
pp. 535-539
Author(s):  
Van Tsai Liu ◽  
Chien Hao Hsu

In this paper, a novel high step-up DC-DC converter has been designed for fuel cell applications. The proposed high step-up converter can be used for various portable energy storage components such as fuel cells which are used for hybrid electric vehicles (HEV), and light electric vehicles (LEV).The proposed converter is integrated by boost circuit, voltage lift capacitor, and coupled-inductor techniques to achieve high step-up voltage and has several advantages. First, the circuit is controlled by one single pulse width modulation (PWM). Second, the converter consists of active clamp circuit to recycle the leakage inductance and send to output capacitor so that the voltage spike on active switch is suppressed and efficiency is also improved. Third, by using the winding of secondary boost circuit, and voltage lift capacitor techniques, the high voltage gain can be achieved without more than 50% duty ratio, and the slope compensation circuit can also be simplified.Finally, a 1k W prototype converter is implemented, to verify the performance of the proposed converter with input voltage 48V, output voltage 400V, and output power 1k W is also achieved. The highest efficiency is 92.96% at 400W, and the full-load efficiency is up to 90.48%.


Author(s):  
Eng. Meshari J. AlJandal ◽  
◽  
Dr. Khaled S. AlRasheed ◽  
Eng. Muhammad R. Jamal ◽  
◽  
...  

This paper describes a modularized smart system architecture which is integrated with Internet of Thing (IoT) into the DC-DC converters to build a programmable technique to leverage machine learning algorithms to predict possible future faults to the system. In addition, it facilitates the performance optimization of the boost converter. This system can be established with low computing hardware to simulates the control behavior and data-driven method of IoT-based, due to the unreliability initiated from the integration of IoT technology and power electronic converters. In response to these challenges, the current paper addresses a scientific approach using small signal analysis of dc-dc boost converter (non-Ideal) with closed loop control to analyze the small deviations or abnormalities in transient region and the steady-state operating point. Complete state-space analysis is done to obtain output voltage using pulse width modulation techniques for boosting the voltage of the input voltage to a higher level by momentarily storing and release the energy in the conductor. The model of the converter is designed and simulated using voltage mode controlling method. Digital implementation based on Arduino platform was implemented to compensate perturbations of sudden load variation either on voltage or current loads. A Simulation study is conducted to validate the result of the step-up dc-dc converter using MATLAB.


Author(s):  
Yong-Seng Wong ◽  
Jiann-Fuh Chen ◽  
Kuo-Bin Liu

A high step-up DC-to-DC converter that integrates an isolated transformer and a switched-clamp capacitor is presented in this study. The voltage stress of the main power switch should be clamped to 1/4 V by using the turn ratio and switched-clamp capacitor of an isolated transformer to achieve a high voltage gain. In addition, a passive clamp circuit is employed reduce voltage stress on the main power switch. The energy of the leakage inductor can be recycled by the clamp capacitor because of the passive clamp circuit, thereby improving the power converter efficiency. The converter consists of one isolated transformer, one main switch, three capacitors, and four diodes. Operating principle and steady-state analyses are also discussed. Finally, a 24-V-input voltage to 200-V-output voltage and a 150 W output power prototype converter are fabricated in the laboratory. The maximum efficiency of the converter is 95.1 at 60 W.


2020 ◽  
Vol 11 (4) ◽  
pp. 64 ◽  
Author(s):  
Zhengxin Liu ◽  
Jiuyu Du ◽  
Boyang Yu

Direct current to direct current (DC/DC) converters are required to have higher voltage gains in some applications for electric vehicles, high-voltage level charging systems and fuel cell electric vehicles. Therefore, it is greatly important to carry out research on high voltage gain DC/DC converters. To improve the efficiency of high voltage gain DC/DC converters and solve the problems of output voltage ripple and robustness, this paper proposes a double-boost DC/DC converter. Based on the small-signal model of the proposed converter, a double closed-loop controller with voltage–current feedback and input voltage feedforward is designed. The experimental results show that the maximum efficiency of the proposed converter exceeds 95%, and the output voltage ripple factor is 0.01. Compared with the traditional boost converter and multi-phase interleaved DC/DC converter, the proposed topology has certain advantages in terms of voltage gain, device stress, number of devices, and application of control algorithms.


Author(s):  
S. Ravi ◽  
Vitaliy Mezhuyev ◽  
K. Iyswarya Annapoorani ◽  
P. Sukumar

<p>This proposal proposes a DC/DC Buck Boost converter which has been used as a smooth starter for a DC Permanent Magnet Motor. In the existing system the DC/DC Buck Converter is used which provide the output less than the input Signal. Using buck converter it is difficult to increase the value of the input signal. Hence DC/DC Buck- Boost Converter used from which it is possible to get both the increased and decreased output from the given input. Previously pulse width modulation signals with respective to motor voltage is used. However they produce variations in the voltage and current of the motor. The above problem is overcome by using DC/DC Power converter. The proposed system with reduction in size, reduced ripples and increase in speed makes the system to operate at both low and high power applications. The proposed system results in higher efficiency, reduces the ripple content and the stress. The results are validated through MATLAB/Simulink and real time implementation.</p>


Author(s):  
Ibrahim Alhamrouni ◽  
M. K. Rahmat ◽  
F. A. Ismail ◽  
Mohamed Salem ◽  
Awang Jusoh ◽  
...  

This study highlights a new construction of SEPIC DC-DC converter. The proposed converter aims for some features such as high voltage gain, continuous input current and reduce stress on the power switch. In addition, the circuit construction ensurs the simplicity in design along with signicant cost saving, since its components are readily available and smaller in size compared to the off-shelf components. This type of converter can adjust the DC voltage to maintain its output voltage to be constant. Typically, SEPIC operated in equipment that uses battery and also in wide range input voltage DC power supply. The converter is designed for renewable energy application where it is able to regulate the output voltage of the Photovoltaic (PV). The converter has been analysed based on different switching frequencies and duty cycle. Thus the outcome of the proposed converter can be achieved by using D=0.45 and fs=30 kHz. The proposed converter is supplied by 26V as an input voltage and produces 300V output and gives 94% of efficiency.


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 580
Author(s):  
Bor-Ren Lin ◽  
Yi-Hao Peng

This paper studies and implements a power converter to have less current ripple output and wide voltage input operation. A three-leg converter with different primary turns is presented on its high-voltage side to extend the input voltage range. The current doubler rectification circuit is adopted on the output side to have low current ripple capability. From the switching states of the three-leg converter, the presented circuit has two equivalent sub-circuits under different input voltage ranges (Vin = 120–270 V or 270–600 V). The general phase-shift pulse-width modulation is employed to control the presented converter so that power devices can be turned on at zero voltage in order to reduce switching loss. Compared to two-stage circuit topologies with a wide voltage input operation, the presented converter has the benefits of simple circuit structure, easy control algorithm using a general integrated circuit or digital controller, and less components. The performance of the presented circuit is confirmed and validated by an 800 W laboratory prototype.


Sign in / Sign up

Export Citation Format

Share Document