scholarly journals Assessment of conformity of actual thoraco-lumbar pedicle screw dimensions to manufacturers’ specifications

2021 ◽  
Vol 104 (3) ◽  
pp. 003685042110350
Author(s):  
Marian Banas ◽  
Nirjhar Hore ◽  
Michael Buchfelder ◽  
Sebastian Brandner

Although correct selection of pedicle screw dimensions is indispensable to achieving optimum results, manufacturer-specified or intended dimensions may differ from actual dimensions. Here we analyzed the reliability of specifications made by various manufacturers by comparing them to the actual lengths and diameters of pedicle screws in a standardized experimental setup. We analyzed the actual length and diameter of pedicle screws of five different manufacturers. Four different screw lengths and for each length two different diameters were measured. Measurements were performed with the pedicle screws attached to a rod, with the length determined from the bottom of the tulip to the tip of the screw and the diameters determined at the proximal and distal threads. Differences in length of > 1 mm were found between the manufacturers’ specifications and our actual measurements in 24 different pedicle screws. The highest deviation of the measured length from the manufacturers’ specification was 3.2 mm. The difference in length between the shortest and longest screw with identical specifications was 3.4 mm. The highest deviation of the measured proximal thread diameters and the manufacturer’s specifications was 0.5 mm. The diameter of the distal thread depends on the shape of the pedicle screw and hence varies between manufacturers in conical screws. We found clear differences in the length of pedicle screws with identical manufacturer specifications. Since differences between the actual dimensions and the dimensions indicated by the manufacturer may vary, this needs to be taken into account during the planning of spine instrumentation.

2017 ◽  
Vol 42 (5) ◽  
pp. E4 ◽  
Author(s):  
Timur M. Urakov ◽  
Ken Hsuan-kan Chang ◽  
S. Shelby Burks ◽  
Michael Y. Wang

OBJECTIVESpine surgery is complex and involves various steps. Current robotic technology is mostly aimed at assisting with pedicle screw insertion. This report evaluates the feasibility of robot-assisted pedicle instrumentation in an academic environment with the involvement of residents and fellows.METHODSThe Renaissance Guidance System was used to plan and execute pedicle screw placement in open and percutaneous consecutive cases performed in the period of December 2015 to December 2016. The database was reviewed to assess the usability of the robot by neurosurgical trainees. Outcome measures included time per screw, fluoroscopy time, breached screws, and other complications. Screw placement was assessed in patients with postoperative CT studies. The speed of screw placement and fluoroscopy time were collected at the time of surgery by personnel affiliated with the robot’s manufacturer. Complication and imaging data were reviewed retrospectively.RESULTSA total of 306 pedicle screws were inserted in 30 patients with robot guidance. The average time for junior residents was 4.4 min/screw and for senior residents and fellows, 4.02 min/screw (p = 0.61). Among the residents dedicated to spine surgery, the average speed was 3.84 min/screw, while nondedicated residents took 4.5 min/screw (p = 0.41). Evaluation of breached screws revealed some of the pitfalls in using the robot.CONCLUSIONSNo significant difference regarding the speed of pedicle instrumentation was detected between the operators’ years of experience or dedication to spine surgery, although more participants are required to investigate this completely. On the other hand, there was a trend toward improved efficiency with more cases performed. To the authors’ knowledge, this is the first reported academic experience with robot-assisted spine instrumentation.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Engin Çetin ◽  
Mustafa Özkaya ◽  
Ümit Özgür Güler ◽  
Emre Acaroğlu ◽  
Teyfik Demir

Introduction.Polyaxial screws had been only tested according to the ASTM standards (when they were perpendicularly positioned to the rod). In this study, effects of the pedicle screws angled fixation to the rod on the mechanical properties of fixation were investigated.Materials and Method.30 vertically fixed screws and 30 screws fixed with angle were used in the study. Screws were used in three different diameters which were 6.5 mm, 7.0 mm, and 7.5 mm, in equal numbers. Axial pull-out and flexion moment tests were performed. Test results compared with each other using appropriate statistical methods.Results.In pull-out test, vertically fixed screws, in 6.5 mm and 7.0 mm diameter, had significantly higher maximum load values than angled fixed screws with the same diameters (P<0.01). Additionally, vertically fixed screws, in all diameters, had significantly greater stiffness according to corresponding size fixed with angle (P<0.005).Conclusion.Fixing the pedicle screw to the rod with angle significantly decreased the pull-out stiffness in all diameters. Similarly, pedicle screw instrumentation fixed with angle decreased the minimum sagittal angle between the rod and the screw in all diameters for flexion moment test but the differences were not significant.


2021 ◽  
Author(s):  
Ismail Kaya ◽  
Ilker Cingoz ◽  
Meryem Sahin ◽  
Emirhan Bozoglan ◽  
Murat Sayin ◽  
...  

Abstract Background: This study aims to compare the clinical results of patients with upper thoracic vertebral fractures treated with pedicle screw and posterior spinal fusion with preoperative surgical planning and 3-dimensional (3D) modeling and patients treated with freehand screws.Methods: Thirty patients who underwent pedicle screw placement with a diagnosis of upper thoracic fracture between June 2018 and October 2020 were included in our study. Pedicle screws were used in 15 patients (group 1) after the planning was completed with the help of 3D preoperative printing and modeling. Pedicle screws were applied in 15 patients in the control group (group 2) using the freehand technique. Intraoperative bleeding amount, pedicle screw insertion time, and correct screw placement data in both groups were recorded. The time of insertion of each pedicle screw was recorded.Results: The operation time was 134 ± 22 minutes for group 1 and 152 ± 38 minutes for group 2. The difference in operation times was found to be statistically significant (p <0.05). Based on axial and sagittal reconstruction images, the accuracy rate of pedicle screw placement (grade 0 and 1) in group I was 96.5% compared to 84.2% in group II. Analyzing axial reconstruction images alone, the overall perforation rate was 10.3% in group I compared to 26.3% in group II. The minor perforation rate (Grade 1, <2 mm) was 7.0% in group I compared to 12.2% in group II. The moderate perforation rate (grade 2, 2-4 mm) was 3.4% in group I compared to 14% in group II. The severe perforation rate (grade 3, > 4 mm) was 1.7% in group II. The difference in overall accuracy rates between the two groups was significant (p<0.05).Conclusions: For 3D models of upper thoracic pedicle screw insertion, guide plates can be produced inexpensively and individually. It provides a new method for the accurate placement of upper thoracic pedicle screws with high accuracy and secure use in screw insertion.


2020 ◽  
pp. 039139882096448
Author(s):  
Pushpdant Jain ◽  
David Chua Sing Ngie ◽  
Soh Fong Lim ◽  
Bee Huah Lim

Pedicular arthrodesis is the traditional procedure in terms of increase in the biomechanical stability with higher fixation rate. The current work aims to identify the effect of three spinal pedicle screws considering cortical and cancellous degeneracy condition. Lumbar section L2-L3 is utilized and various load and moment conditions were applied to depict the various biomechanical parameters for selection of suitable screw. Three dimensional model is considered in finite element analysis to identify the various responses of pedicle screw at bone screw juncture. Computed tomography (CT) images of a healthy male were considered to generate the finite element vertebral model. Generated intact model was further utilized to develop the other implanted models of degenerated cortical and cancellous bone models. The three fused instrumented models with different cortical and cancellous degeneracy conditions were analyzed in finite element analysis. The results were obtained as stress pattern at bone screw boundary and intervertebral disc stress. FE simulated results represents significant changes in the von Mises stress due to various load and moment conditions on degenerated bones during different body movement conditions. Results have shown that among all pedicle screws, the 6.0 mm diameter screw reflects very less stress values at the juncture. Multiple results on biomechanical aspects obtained during the FE study can be considered to design a new stabilization device and may be helpful to plan surgery of critical sections.


2020 ◽  
Vol 19 (2) ◽  
pp. 127-132
Author(s):  
FERNANDO MAGALHÃES GOSENDE ◽  
ROGÉRIO LÚCIO CHAVES DE RESENDE ◽  
CARLOS BAUER NAMEM LOPES JUNIOR ◽  
JEFFERSON SOARES LEAL ◽  
PAULA SILVEIRA SANTANA ◽  
...  

ABSTRACT Objective Morphometric study of the positioning of the cortical trajectory pedicle screw in the lumbar spine of Brazilian patients of different sexes and ages, through the use of computed tomography images, in order to obtain more reliable data about cortical screw insertion and the variations observed, providing assistance for a safer, more effective approach with fewer complications. Methods Selection of 100 patients from a database, alternating by sex, measuring the length, diameter, cephalic angulation, and lateral angulation of the vertebrae from L1 to L5. Results Statistically significant measurements were obtained for the four different parameters in relation to sex. The mean age was 56, with a minimum of 20 and a maximum of 87 years. The L4 and L5 screws showed a reduction in relation to the other levels, while the width showed a progressive increase starting at L3. Lateral angulation was the parameter with the least variation among the levels, while there was greater variation and a reduction from L4 to L5 in cephalic angulation. Conclusion Statistically significant results were obtained for length, diameter, lateral and cephalic angulation. Sex was a significant factor in spine surgery instrumentation using the cortical trajectory pedicle screw technique. Level of evidence I; Diagnostic study (investigation of an examination for diagnosis).


2020 ◽  
Vol 7 (2) ◽  
pp. 34-41
Author(s):  
VLADIMIR NIKONOV ◽  
◽  
ANTON ZOBOV ◽  

The construction and selection of a suitable bijective function, that is, substitution, is now becoming an important applied task, particularly for building block encryption systems. Many articles have suggested using different approaches to determining the quality of substitution, but most of them are highly computationally complex. The solution of this problem will significantly expand the range of methods for constructing and analyzing scheme in information protection systems. The purpose of research is to find easily measurable characteristics of substitutions, allowing to evaluate their quality, and also measures of the proximity of a particular substitutions to a random one, or its distance from it. For this purpose, several characteristics were proposed in this work: difference and polynomial, and their mathematical expectation was found, as well as variance for the difference characteristic. This allows us to make a conclusion about its quality by comparing the result of calculating the characteristic for a particular substitution with the calculated mathematical expectation. From a computational point of view, the thesises of the article are of exceptional interest due to the simplicity of the algorithm for quantifying the quality of bijective function substitutions. By its nature, the operation of calculating the difference characteristic carries out a simple summation of integer terms in a fixed and small range. Such an operation, both in the modern and in the prospective element base, is embedded in the logic of a wide range of functional elements, especially when implementing computational actions in the optical range, or on other carriers related to the field of nanotechnology.


2018 ◽  
Vol 1 (2) ◽  
pp. 2
Author(s):  
Chiung Chyi Shen

Use of pedicle screws is widespread in spinal surgery for degenerative, traumatic, and oncological diseases. The conventional technique is based on the recognition of anatomic landmarks, preparation and palpation of cortices of the pedicle under control of an intraoperative C-arm (iC-arm) fluoroscopy. With these conventional methods, the median pedicle screw accuracy ranges from 86.7% to 93.8%, even if perforation rates range from 21.1% to 39.8%.The development of novel intraoperative navigational techniques, commonly referred to as image-guided surgery (IGS), provide simultaneous and multiplanar views of spinal anatomy. IGS technology can increase the accuracy of spinal instrumentation procedures and improve patient safety. These systems, such as fluoroscopy-based image guidance ("virtual fluoroscopy") and computed tomography (CT)-based computer-guidance systems, have sensibly minimized risk of pedicle screw misplacement, with overall perforation rates ranging from between 14.3% and 9.3%, respectively."Virtual fluoroscopy" allows simultaneous two-dimensional (2D) guidance in multiple planes, but does not provide any axial images; quality of images is directly dependent on the resolution of the acquired fluoroscopic projections. Furthermore, computer-assisted surgical navigation systems decrease the reliance on intraoperative imaging, thus reducing the use of intraprocedure ionizing radiation. The major limitation of this technique is related to the variation of the position of the patient from the preoperative CT scan, usually obtained before surgery in a supine position, and the operative position (prone). The next technological evolution is the use of an intraoperative CT (iCT) scan, which would allow us to solve the position-dependent changes, granting a higher accuracy in the navigation system. 


2019 ◽  
Vol 31 (1) ◽  
pp. 139-146 ◽  
Author(s):  
Camilo A. Molina ◽  
Nicholas Theodore ◽  
A. Karim Ahmed ◽  
Erick M. Westbroek ◽  
Yigal Mirovsky ◽  
...  

OBJECTIVEAugmented reality (AR) is a novel technology that has the potential to increase the technical feasibility, accuracy, and safety of conventional manual and robotic computer-navigated pedicle insertion methods. Visual data are directly projected to the operator’s retina and overlaid onto the surgical field, thereby removing the requirement to shift attention to a remote display. The objective of this study was to assess the comparative accuracy of AR-assisted pedicle screw insertion in comparison to conventional pedicle screw insertion methods.METHODSFive cadaveric male torsos were instrumented bilaterally from T6 to L5 for a total of 120 inserted pedicle screws. Postprocedural CT scans were obtained, and screw insertion accuracy was graded by 2 independent neuroradiologists using both the Gertzbein scale (GS) and a combination of that scale and the Heary classification, referred to in this paper as the Heary-Gertzbein scale (HGS). Non-inferiority analysis was performed, comparing the accuracy to freehand, manual computer-navigated, and robotics-assisted computer-navigated insertion accuracy rates reported in the literature. User experience analysis was conducted via a user experience questionnaire filled out by operators after the procedures.RESULTSThe overall screw placement accuracy achieved with the AR system was 96.7% based on the HGS and 94.6% based on the GS. Insertion accuracy was non-inferior to accuracy reported for manual computer-navigated pedicle insertion based on both the GS and the HGS scores. When compared to accuracy reported for robotics-assisted computer-navigated insertion, accuracy achieved with the AR system was found to be non-inferior when assessed with the GS, but superior when assessed with the HGS. Last, accuracy results achieved with the AR system were found to be superior to results obtained with freehand insertion based on both the HGS and the GS scores. Accuracy results were not found to be inferior in any comparison. User experience analysis yielded “excellent” usability classification.CONCLUSIONSAR-assisted pedicle screw insertion is a technically feasible and accurate insertion method.


At production of fabrics, including fabrics for agricultural purpose, an important role is played by the cor-rect adjustment of operation of machine main regulator. The quality of setup of machine main controller is determined by the proper selection of rotation angle of warp beam weaving per one filling thread. In the pro-cess of using the regulator as a result of mistakes in adjustment, wear of transmission gear and backlashes in connections of details there are random changes in threads length. The purpose of the article is the research of property of random errors of basis giving by STB machine regulator. Mistakes can be both negative, and positive. In case of emergence only negative or only positive mistakes operation of the machine becomes im-possible as there will be a consecutive accumulation of mistakes. As a result of experimental data processing for stable process of weaving and the invariable diameter of basis threads winding of threads it is revealed that the random error of giving is set up as linear function of the accidental length having normal distribution. Measurements of accidental deviations in giving of a basis by the main regulator allowed to construct a curve of normal distribution of its actual length for one pass of weft thread. The presented curve of distribution of random errors in giving of a basis is the displaced curve of normal distribution of the accidental sizes. Also we define the density of probability of normal distribution of basis giving errors connected with a margin er-ror operation of the main regulator knowing of which allows to plan ways of their decrease that is important for improvement of quality of the produced fabrics.


Author(s):  
Alexander Gillespie

This book examines the idea of sustainable development, made up of economic, social, and environmental parts over the period of human history. This work suggests humanity has been unsustainable in all three areas for most of its history, although in the last few hundred years the scale of unsustainability has increased, while, simultaneously, answers have started to emerge. This conclusion can be seen in two parts, namely the economic and social sides of sustainable development and then the environmental ones. This work suggests that, with the correct selection of tools, solid and positive foundations for the economic and social sides of sustainable development is possible as the world globalizes. This is not, however, a foregone conclusion. Despite a number of recent positive indicators in this area, there are still very large unanswered questions with existing mechanisms and other gaps in the international architecture which, if not fixed, could quickly make problems of economic and social sustainability worse, not better. With the third leg of sustainable development, that for the environment, the optimism is not as strong. The good news is that science, laws, and policies have evolved and expanded to the level that, in theory, there is no environmental problem which cannot be solved. In many areas, especially in the developed world, success is already easy to measure. Where it is not easy to measure, and pessimism creeps in, is in the developing world, which is now inheriting a scale and mixture of environmental difficulties which are simply unprecedented.


Sign in / Sign up

Export Citation Format

Share Document