I-LEACH: energy-efficient routing protocol for monitoring of irrigation canals

SIMULATION ◽  
2015 ◽  
Vol 91 (8) ◽  
pp. 750-764 ◽  
Author(s):  
Muhammad Adeel Pasha ◽  
Jahangir Hassan Khan ◽  
Shahid Masud

Irrigation canals and their tributaries, originating from the run of a river, span a considerable geographical area that is typically of the order of 100 km2. Efficient deployment of wireless sensor networks (WSNs) to monitor and control the flow of scarce water resources is a challenging task, mainly because the WSN motes are designed to consume very low power and communicate over very short distances. This paper investigates the use of different WSN protocols to monitor water usage over irrigation networks in the province of Punjab, Pakistan. This irrigation network is considered to be among the biggest in the world with over 58,000 canal outlets. The paper proposes a new energy-efficient routing protocol that improves the network lifespan as well as the packet error rates resulting in a more dependable distributed WSN. The protocol was simulated along with other state-of-the-art protocols in random as well as linear topologies with simulation variables such as the number of nodes, coverage area and base station position varied in each case. The results also show that the node die-out pattern in our protocol is uniformly spread throughout the network as compared with other existing protocols resulting in increased robustness. The NS3 network simulator was used to simulate the geographically distributed WSN with different protocols and system parameters.

Author(s):  
Sardjoeni Moedjiono ◽  
Aries Kusdaryono

Preserving energy of sensor node in wireless sensor network is an effort to prolong the lifetime of network. Energy of sensor node is very crucial because battery powered and irreplaceable. Energy conservation of sensor node is an effort to reduce energy consumption in order to preserve resource for network lifetime. It can be achieved through efficient energy usage by reducing consumption of energy or decrease energy usage while achieving a similar outcome. In this paper, the authors propose power layer energy efficient routing protocol in wireless sensor network, named PLRP, which use power control and multi-hop routing protocol to control overhead of sensor node and create clustering to distribute energy dissipation and increase energy efficiency of all sensor node. The main idea of PLRP is the use of power control, which divide sensor node into group by base station uses layer of energy and maximize the computation energy in base station to reduce computational energy in sensor node for conservation of network lifetime. The performance of PLRP compared to BCDCP and BIDRP based of hierarchical routing protocol. The simulation results show that PLRP achieve 25% and 30% of improvement on network lifetime.


2013 ◽  
Vol 579-580 ◽  
pp. 732-739
Author(s):  
Zhi Yan Ma ◽  
Guang You Yang ◽  
Jing Jing Zhou ◽  
Xiong Gan

An energy-efficient wireless sensor routing protocol (Energy-efficient clustering hierarchy routing protocol, EECH) for industrial field is proposed based on LEACH protocol according to the energy inefficiency of existing routing protocols and the characteristics of industrial field applications. The EECH protocol takes full advantages of the node clustering and time slot distribution in LEACH and implements the functions such as clustering, multi hop time slot distribution, node sleeping and data gathering. The cluster heads can be evenly distributed in the area with the geography location information of the wireless nodes, so that the optimal data gathering path can be established. Meanwhile, the EECH protocol can reduce the conflict in data receiving/transmitting and the energy consumption of the nodes, and extend the network lifetime through the multi hop time slot distribution and node sleep mechanism. The simulation results have shown that the death time of the first node in EECH protocol is extended double time than that of LEACH protocol. When most of the nodes dies, the amount of received data of the base station node is more than twice as much as the LEACH protocol, which has verified the energy efficiency characteristic of the EECH protocol.


2016 ◽  
Vol 15 (14) ◽  
pp. 7406-7415
Author(s):  
Muhammad Rizwan ◽  
Muhammad S. Nisar ◽  
Hongbo Jiang

Energy preservation is one of the most important research challenges in Wireless Senor Networks (WSNs). In recent research, topologies and architectures have investigated that allow energy efficiency in WSNs. Clustering is one of the most famous energy efficient techniques. In clustering, the selection of cluster head (CH) and short distance multi-hop energy efficient communication between CH and base station (BS) plays a vital role in order to achieve the desired energy efficiency in the sensor network. In this energy saving solution, we purpose and combine the idea of fuzzy logic based CH selection and multihop short distance communication between CH and base station in order to prolong the stable period and life span of network. Our proposed routing protocol, Fuzzy Logic based Multihop Energy Efficient Routing Protocol (FMEEP) for Heterogeneous WSN, which uses fuzzy logic inference system (FIS) in order to select a qualified CH in the cluster formation process and minimizes the overall energy dissipation in the sensor network. The simulation results have shown that purposed routing scheme outperforms in terms of stability period and network lifetime as compared to previous routing protocols. 


Author(s):  
Sonam Ashok Kamble ◽  
Dilip S. Kale

A wireless sensor network (WSN) consists of hundreds to thousands of sensor nodes, working in any physical environment, and having sensing, computation and communication capabilities. Each sensor node in WSN is capable of communicating with each other and the base station (BS) for the purpose of data integration and dissemination. As the battery replacement is not easy for WSN with thousands of physically embedded nodes, energy conservation becomes one of the most important challenges in WSNs. And hence there is a need for energy efficient routing protocol to offer a long-life work time. In this paper, we propose an Advanced Tree Based Energy Routing Protocol.  In this protocol for each round BS assigns a root node and broadcasts this selection to all sensor nodes. And then each node selects its parent by considering itself and its neighbour’s information, thus making it a dynamic protocol. It is a hierarchical protocol of WSN which increases the lifetime of network by using the energy of the network by using the energy of the network in an efficient way.


Energies ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 4174 ◽  
Author(s):  
Khalid Haseeb ◽  
Ahmad Almogren ◽  
Naveed Islam ◽  
Ikram Ud Din ◽  
Zahoor Jan

Due to the advancement of information and communication technologies, the use of Internet of Things (IoT) devices has increased exponentially. In the development of IoT, wireless sensor networks (WSNs) perform a vital part and comprises of low-cost smart devices for information gathering. However, such smart devices have constraints in terms of computation, processing, memory and energy resources. Along with such constraints, one of the fundamental challenges for WSN is to achieve reliability with the security of transmitted data in a vulnerable environment against malicious nodes. This paper aims to develop an energy-efficient and secure routing protocol (ESR) for intrusion avoidance in IoT based on WSN to increase the network period and data trustworthiness. Firstly, the proposed protocol creates different energy-efficient clusters based on the intrinsic qualities of nodes. Secondly, based on the (k,n) threshold-based Shamir secret sharing scheme, the reliability and security of the sensory information among the base station (BS) and cluster head are achieved. The proposed security scheme presents a light-weight solution to cope with intrusions generated by malicious nodes. The experimental results using the network simulator (NS-2) demonstrate that the proposed routing protocol achieved improvement in terms of network lifetime as 37%, average end-to-end delay as 24%, packet delivery ratio as 30%, average communication cost as 29%, network overhead as 28% and the frequency of route re-discoveries as 38% when compared with the existing work under dynamic network topologies.


2021 ◽  
Vol 13 (5) ◽  
pp. 57-74
Author(s):  
Nguyen Duy Tan ◽  
Vu Khanh Quy ◽  
Pham Ngoc Hung ◽  
Le Van Vinh

One of the main challenges for researchers to build routing protocols is how to use energy efficiently to extend the lifespan of the whole wireless sensor networks (WSN) because sensor nodes have limited battery power resources. In this work, we propose a Sector Tree-Based clustering routing protocol (STB-EE) for Energy Efficiency to cope with this problem, where the entire network area is partitioned into dynamic sectors (clusters), which balance the number of alive nodes. The nodes in each sector only communicate with their nearest neighbour by constructing a minimum tree based on the Kruskal algorithm and using mixed distance from candidate node to base station (BS) and remaining energy of candidate nodes to determine which node will become the cluster head (CH) in each cluster? By calculating the duration of time in each round for suitability, STB-EE increases the number of data packets sent to the BS. Our simulation results show that the network lifespan using STB-EE can be improved by about 16% and 10% in comparison to power-efficient gathering in sensor information system (PEGASIS) and energy-efficient PEGASIS-based protocol (IEEPB), respectively.


Author(s):  
Ammar Babiker ◽  
Mohamed Elmaleeh ◽  
Onaytra Abbas ◽  
Abbdelrahman Osman Elfaki

<p>Energy efficiency has been considered as the most important issue in wireless sensor networks. As in many applications, wireless sensors are scattered in a wide harsh area, where the battery replacement or charging will be quite difficult and it is the most important challenge. Therefore, the design of energy saving mechanism becomes mandatory in most recent research. In this paper, a new energy efficient clustered routing protocol is proposed: the proposed protocol is based on analyzing the data collected from the sensors in a base-station. Based on this analysis the cluster head will be selected as the one with the most useful data. Then, a variable time slot is specified to each sensor to minimize the transmission of repetitive and un-useful data. The proposed protocol Data-Based Energy Efficient Clustered Routing Protocol for Wireless Sensors Networks (DCRP) was compared with the famous energy efficient LEACH protocol and also with one of the recent energy efficient routing protocols named Position Responsive Routing Protocol (PRRP). DCRP has been used in monitoring the floods in Tabuk area –Saudi Arabia. It shows comparatively better results.</p>


2020 ◽  
Vol 8 (6) ◽  
pp. 5639-5642

The evolution of mobile computing devices to share information has forced mobile users to opt for a Wide Area Network (WAN). Infrastructure-less network has captured all the surroundings. Therefore, in this work a Cluster based Energy Efficient Routing Protocol (CERP) for has been proposed for multi-hop infrastructure-less wireless networks and has been compared with widespread existing protocols. This routing protocol has the capability to identify the backbones from all the existing nodes within the network and circulate them within acceptable time limit. CERP backbones maintain its unique arrangement. They remain stimulated for multi-hop packet hoping while remaining in power budgeting mode. The alternative sensor nodes occasionally check if the present nodes are awaken and can set up itself as the backbone of the network. In order to identify the nodes that are not required and to regulate backbone within specifically defined geographical area, researchers opt to organize a scrutinizer from the backbone. This has to be done beneath them and also in between of the geographic area of the entire network. It has been predicted that the amount of energy saved using proposed protocol will amplify exclusively up to some extent once the density increases.


2016 ◽  
Vol 15 (4) ◽  
pp. 6654-6658
Author(s):  
Irfan Shaqiri ◽  
Aristotel Tentov

In this paper we give an overview of some routing protocols which can improve the efficiency and scalability of wireless sensor networks. The Wireless Sensor Network (WSN) is a network consisting of ten to thousand small nodes with sensing, computing and wireless communication capabilities. WSN are generally used to monitor activities and report events, such as pollution parameters, healthcare issues, fire info etc. in a specific area or environment. It routs data back to the Base Station (BS). Data transmission is usually a multi-hop from node to node towards the BS. This type of networks is limited in power, computational and communication bandwidth. The main goal of all researchers is to find out the energy efficient routing protocol which will improve considerably networks resources in term of prolonging lifetime of sensor nodes. Also we highlight the various routing protocol with advantages and limitations as well. 


Author(s):  
Yugashree Bhadane ◽  
Pooja Kadam

Now days, wireless technology is one of the center of attention for users and researchers. Wireless network is a network having large number of sensor nodes and hence called as “Wireless Sensor Network (WSN)”. WSN monitors and senses the environment of targeted area. The sensor nodes in WSN transmit data to the base station depending on the application. These sensor nodes communicate with each other and routing is selected on the basis of routing protocols which are application specific. Based on network structure, routing protocols in WSN can be divided into two categories: flat routing, hierarchical or cluster based routing, location based routing. Out of these, hierarchical or cluster based routing is becoming an active branch of routing technology in WSN. To allow base station to receive unaltered or original data, routing protocol should be energy-efficient and secure. To fulfill this, Hierarchical or Cluster base routing protocol for WSN is the most energy-efficient among other routing protocols. Hence, in this paper, we present a survey on different hierarchical clustered routing techniques for WSN. We also present the key management schemes to provide security in WSN. Further we study and compare secure hierarchical routing protocols based on various criteria.


Sign in / Sign up

Export Citation Format

Share Document