An improvement design of groove-wound clothing on the licker-in—Part II. Application on the card machine

2018 ◽  
Vol 89 (4) ◽  
pp. 551-559
Author(s):  
Shanshan He ◽  
Longdi Cheng ◽  
Wenliang Xue ◽  
Zhong Lu ◽  
Liguo Chen

Due to spiral winding, there is an inclination angle between the teeth and the direction of the tangential velocity of the licker-in, which makes the teeth obliquely work with the fibers instead of vertically. In the previous work in Part I, we discussed the impacts of this using theoretical mechanical analysis and a digital model in ANSYS Explicit Dynamics. Based on the analysis, this paper makes a new type of card clothing for the licker-in and manufactures the rack by adding a process in the processing for traditional AT5610 × 05611 racks. The comparison of the two slivers worked by the traditional and new design licker-in card clothing show that the new design clothing has an increase of 24.41% on nep removal, which is consistent with the theoretical analysis. According to the paired samples test, the trash removal ratio and the short fiber content in the sliver, this new design shows no deterioration. For further discussion, we collect the noils and calculate the producing rate of the sliver, licker-in droppings and card strips with special collecting equipment. This new design shows a significant increase in the fiber yield percentage (8.45%) and a dramatic decrease for licker-in droppings (33.6%). Yarns from the new rack have better performance on breaking elongation (a decrease of 5.6%) and evenness. Therefore, this design has higher utilization for fibers and good commercial benefit.

2018 ◽  
Vol 89 (5) ◽  
pp. 782-790
Author(s):  
Shanshan He ◽  
Longdi Cheng ◽  
Wenliang Xue ◽  
Zhihong Hua ◽  
Liguo Chen ◽  
...  

This paper argues that the groove-wound licker-in racks’ spiral mounting leads teeth with an inclination angle to the rotating direction. Theoretical analysis of forces on the fibers is carried out when the inclination angle is 0 and θ: when the teeth enter the fiber layer, the inclination angle makes the pressure on fibers increases rapidly and leads to a stronger friction force on fibers. It also leads to increases in both contact area and the wrap angle of the fiber around the teeth. This article also uses ANSYS Explicit Dynamics to simulate the fiber assembly carded by a tooth, when the inclination angle is 0°, 1° and 2°. When the inclination angle of the model is 1°, its fiber deformation is 1.35 times that of 0°; its elastic strain and stress concentration coefficient are 1.40 times than that of 0°; when the inclination angle of the model is 2°, its fiber deformation is 1.72 times than that of 0°; its elastic strain and stress concentration coefficient are 2 times than that of 0°. As with the inclinations increasing, the fiber deformations increase in time grow from 0.0634 and 0.08477 to 0.10584. The simulation also shows that when the tooth works on the fibers, there is a sudden compressive stress on fibers and then this pressure transfers with time. From all of the above, the inclination angle on licker-in teeth results in larger strain and deformation on fibers, so that this inclination angle should be decreased as much as possible in practice.


Gels ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 129
Author(s):  
Kotaro Tanahashi ◽  
Tsuyoshi Koga

Slide-ring (SR) gels, a new type of gels that have cross-links moving along the chains, are known to have unique mechanical characteristics. In the case of biaxial deformations, it has been experimentally shown that the stress–strain (S–S) relationships of SR gels can be well described by the neo-Hookean (NH) model. This behavior is quite different from that of conventional chemical gels, where the S–S curves deviate from the NH model. To understand the molecular mechanism of such peculiar elastic properties of SR gels, we studied the effects of movable cross-links by using molecular simulations and theoretical analysis. We calculate the S–S relationships in biaxial deformation for two types of models: slip model, where the cross-links can slide along chains representing SR gels, and non-slip model, which corresponds to conventional chemical gels. In the theoretical analysis, we calculate the S–S relationships by using the models with the Gaussian and the Langevin chains to investigate the nonlinear stretching effect of the chain in the slip and non-slip models. As a result, we found that the peculiar elastic behaviors of SR gels in biaxial deformations are well explained by the effect of movable cross-links suppressing the nonlinear stretching of the chain.


Author(s):  
I. V. Voievidko ◽  
V. V. Tokaruk ◽  
M. A. Bodzian

On the basis of the theoretical analysis and practical studies of hole drilling of large diameter, a method for designing the BHA with two rock cutting tools is proposed, taking into account the geological and technical factors that have an impact on the formation of the trajectory. The calculation of BHA with two rock cutting tools and a different number of supporting and centralizing components for different geological conditions of drilling is carried out and the analysis of their work in the process of drilling is conducted. The graphic dependences of the deviation intensity variation and the inclination angle with the sinking of borehole of the large diameter for the BHA that can be used for the drilling of vertical and directional wells.


2014 ◽  
Vol 1022 ◽  
pp. 26-29
Author(s):  
Yong Hui Jia ◽  
Jia Xiao Heng

In this paper, the piezoelectric ceramic crisp, poor water resistance, resistance to external load capability is not strong lack of self-designed package more perfect a new type of "smart piezoelectric aggregate", to better address the PZT film resist unfavorable load , vulnerability and durability issues and other aspects; and further superior characteristics of piezoelectric smart sensing and drive integration of theoretical analysis, modeling, numerical calculations, mechanical analysis and experimental research; on this basis, based on the pressure and Experimental Research aggregate electric smart sensor / driver structural health monitoring and damage detection algorithm, the theoretical basis for the realization of the transition from the pilot study engineering applications to provide the experimental basis and technical support.


Author(s):  
Darunee Aussawasathien ◽  
Erol Sancaktar

Electrospun polyacrylonitrile (PAN) fiber precursor based Carbon Nanofiber (CNF) mats were produced and impregnated with epoxy resin. The mechanical properties of as-prepared nanofibers in the mat and short fiber filled epoxy nanocomposite forms were determined to demonstrate the effect of fiber aspect ratio and interconnecting network on those properties. Our experimental results reveal that epoxy nanocomposites containing Electrospun Carbon Nano Fibers (ECNF) with high fiber aspect ratio and high interconnecting network in the non-woven mat form yield better mechanical properties than those filled with short ECNFs. The ECNF mat in epoxy nanocomposites provides better homogeneity, more interlocking network, and easier preparation than short ECNFs. Mechanical properties of ECNF mat-epoxy nanocomposites, which we obtained using tensile and flexural tests, such as stiffness and modulus increased, while toughness and flexural strength decreased, compared to the neat epoxy resin. Dynamic Mechanical Analysis (DMA) results showed, higher modulus for ECNF mat-epoxy nanocomposites, compared to those for neat epoxy resin and short ECNF-epoxy nanocomposites. The epoxy nanocomposites had high modulus, even though the glass transition temperature, Tg values dropped at some extents of ECNF mat contents when compared with the neat epoxy resin. The cure reaction was retarded since the amount of epoxy and hardener decreased at high ECNF contents together with the hindering effect of the ECNF mat to the diffusion of epoxy resin and curing agent, leading to low crosslinking efficiency.


2011 ◽  
Vol 474-476 ◽  
pp. 729-734
Author(s):  
Qiu Yu Zhang ◽  
Zhi Peng Cai ◽  
Zhan Ting Yuan ◽  
Feng Man Miao

Cross-domain authentication is a key technology used in distributed computing, however, it isn’t perfect. In this paper, a new type of hybrid cross-domain authentication model is proposed to make up its shortcoming in safety, scalability and password synchronization. In this model, advantages of Kerberos and SAML in cross-domain authentication process are combined, and it mixed password transport protocols is adopted to achieve password synchronization. Theoretical analysis shows it can enhance the security and scalability of cross-domain authentication, the efficiency of cross-domain authentication is also improved as the attainment of password synchronization.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Zheng Ge ◽  
Weirui Wang

We propose the planetary flywheel inerter, which is a new type of ball screw inerter. A planetary flywheel consists of several planetary gears mounted on a flywheel bracket. When the flywheel bracket is driven by a screw and rotating, each planetary gear meshing with an outer ring gear generates a compound motion composed of revolution and rotation. Theoretical analysis shows that the output force of the planetary flywheel inerter is proportional to the relative acceleration of one terminal of the inerter to the other. Optimizing the gear ratio of the planetary gears to the ring gear allows the planetary flywheel to be lighter than its traditional counterpart, without any loss on the inertance. According to the structure of the planetary flywheel inerter, nonlinear factors of the inerter are analyzed, and a nonlinear dynamical model of the inerter is established. Then the parameters in the model are identified and the accuracy of the model is validated by experiment. Theoretical analysis and experimental data show that the dynamical characteristics of a planetary flywheel inerter and those of a traditional flywheel inerter are basically the same. It is concluded that a planetary flywheel can completely replace a traditional flywheel, making the inerter lighter.


2012 ◽  
Vol 82 (20) ◽  
pp. 2071-2077 ◽  
Author(s):  
Hongshan Wang ◽  
Zhigang Xia ◽  
Weilin Xu

In this study, a quasi-static model is built to theoretically analyze the distribution of twists and spinning tension in embeddable and locatable spun (ELS) yarn formation zone. Important equations are also derived to determine inner mechanics and external configurations of the ELS yarn formation zones 1, 2 and 3. Analysis results demonstrate that in zones 1 and 2 the tension distribution on the filament and staple strand is directly proportional to their linear mass and square of delivery speed; the larger weight causes a smaller angle between the responding component and the composite strand axis line. The angle between the composite strands 1 and 2 can be simply calculated by dividing the composite yarn velocity by composite strand velocity. Online photographs are provided to validate theoretical analysis of the ELS yarn formation zone configuration and twist distribution in zones 1 and 2.


Sign in / Sign up

Export Citation Format

Share Document