Unusually Low Clearance of Two CYP3A Substrates, Alprazolam and Trazodone, in a Volunteer Subject with Wild-Type CYP3A4 Promoter Region

2000 ◽  
Vol 40 (2) ◽  
pp. 200-204 ◽  
Author(s):  
Lisa L. von Moltke ◽  
Thanh Huu Tran ◽  
Monette M. Cotreau ◽  
David J. Greenblatt
Genetics ◽  
1996 ◽  
Vol 142 (3) ◽  
pp. 761-776 ◽  
Author(s):  
Lori A Rinckel ◽  
David J Garfinkel

Abstract In Saccharomyces cerevisiae, the target site specificity of the retrotransposon Ty1 appears to involve the Ty integration complex recognizing chromatin structures. To determine whether changes in chromatin structure affect Ty1 and Ty2 target site preference, we analyzed Ty transposition at the CAN1 locus in mutants containing altered levels of histone proteins. A Δhta1-htb1 mutant with decreased levels of H2A and H2B histone proteins showed a pattern of Ty1 and Ty2 insertions at CAN1 that was significantly different from that of both the wild-type and a Δhta2-htb2 mutant, which does not have altered histone protein levels. Altered levels of H2A and H2B proteins disrupted a dramatic orientation bias in the CAN1 promoter region. In the wild-type strains, few Ty1 and Ty2 insertions in the promoter region were oriented opposite to the direction of CAN1 transcription. In the Δhta1-htb1 background, however, numerous Ty1 and Ty2 insertions were in the opposite orientation clustered within the TATA region. This altered insertion pattern does not appear to be due to a bias caused by selecting canavanine resistant isolates in the different HTA1-HTB1 backgrounds. Our results suggest that reduced levels of histone proteins alter Ty target site preference and disrupt an asymmetric Ty insertion pattern.


1993 ◽  
Vol 13 (12) ◽  
pp. 7232-7238
Author(s):  
W D Rapp ◽  
D S Lupold ◽  
S Mack ◽  
D B Stern

Plant mitochondrial promoters are poorly conserved but generally share a loose consensus sequence spanning approximately 17 nucleotides. Using a homologous in vitro transcription system, we have previously shown that an 11-nucleotide sequence within this region comprises at least part of the maize mitochondrial atp1 promoter (W. Rapp and D. Stern, EMBO J. 11:1065-1073, 1992). We have extended this finding by using a series of linker-scanning and point mutations to define the atp1 promoter in detail. Our results show that mutations at positions -12 to +5, relative to the major transcription start site, can decrease initiation rates to between < 10 and 40% of wild-type levels. Some mutations, scattered throughout this region, have lesser effects or no effect. Taken together, our data suggest a model in which the atp1 promoter consists of a central domain extending from -7 to +5 and an upstream domain of 1 to 3 bp that is centered around -11 to -12. Because many mutations within this promoter region are tolerated in vitro, the maize atp1 promoter is distinct from the highly conserved yeast mitochondrial promoters.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Rui Zhai ◽  
Zhigang Wang ◽  
Chengquan Yang ◽  
Kui Lin-Wang ◽  
Richard Espley ◽  
...  

AbstractFruit with stripes, which are generally longitudinal, can occur naturally, but the bioprocesses underlying this phenomenon are unclear. Previously, we observed an atypical anthocyanin distribution that caused red-striped fruit on the spontaneous pear bud sport “Red Zaosu” (Pyrus bretschneideri Rehd.). In this study, comparative transcriptome analysis of the sport and wild-type “Zaosu” revealed that this atypical anthocyanin accumulation was tightly correlated with abnormal overexpression of the gene-encoding gibberellin (GA) 2-beta-dioxygenase 8, PbGA2ox8. Consistently, decreased methylation was also observed in the promoter region of PbGA2ox8 from “Red Zaosu” compared with “Zaosu”. Moreover, the GA levels in “Red Zaosu” seedlings were lower than those in “Zaosu” seedlings, and the application of exogenous GA4 reduced abnormal anthocyanin accumulation in “Red Zaosu”. Transient overexpression of PbGA2ox8 reduced the GA4 level and caused anthocyanin accumulation in pear fruit skin. Moreover, the presence of red stripes indicated anthocyanin accumulation in the hypanthial epidermal layer near vascular branches (VBs) in “Red Zaosu”. Transient overexpression of PbGA2ox8 resulting from vacuum infiltration induced anthocyanin accumulation preferentially in calcium-enriched areas near the vascular bundles in pear leaves. We propose a fruit-striping mechanism, in which the abnormal overexpression of PbGA2ox8 in “Red Zaosu” induces the formation of a longitudinal array of anthocyanin stripes near vascular bundles in fruit.


1999 ◽  
Vol 43 (2) ◽  
pp. 354-356 ◽  
Author(s):  
Juan Luis Muñoz-Bellido ◽  
M. A. Alonso Manzanares ◽  
J. A. Martínez Andrés ◽  
M. N. Gutiérrez Zufiaurre ◽  
G. Ortiz ◽  
...  

ABSTRACT Fluoroquinolone efflux was studied in 47 Staphylococcus aureus clinical strains with MICs of ciprofloxacin (CFX) of ≤2 μg/ml. Forty-three strains were wild type for gyrA,gyrB, and grlA quinolone resistance-determining regions and for norA and its promoter region. Forty of these strains (MICs of CFX, 0.1 to 0.2 μg/ml) did not show efflux of fluoroquinolones. Three strains (MICs of CFX, 1 to 2 μg/ml) showed efflux. These results suggest that efflux can appear in S. aureus clinical strains in the absence of mutations innorA and its promoter.


1998 ◽  
Vol 64 (3) ◽  
pp. 1024-1028 ◽  
Author(s):  
Javier Lloret ◽  
Brande B. H. Wulff ◽  
Jose M. Rubio ◽  
J. Allan Downie ◽  
Ildefonso Bonilla ◽  
...  

ABSTRACT The halotolerant strain Rhizobium meliloti EFB1 modifies the production of extracellular polysaccharides in response to salt. EFB1 colonies grown in the presence of 0.3 M NaCl show a decrease in mucoidy, and in salt-supplemented liquid medium this organism produces 40% less exopolysaccharides. We isolated transposon-induced mutant that, when grown in the absence of salt, had a colony morphology (nonmucoid) similar to the colony morphology of the wild type grown in the presence of salt. Calcofluor fluorescence, proton nuclear magnetic resonance spectroscopy, and genetic analysis of the mutant indicated that galactoglucan, which is not produced under normal conditions by other R. meliloti strains, is produced by strain EFB1 and that production of this compound decreases when the organism is grown in the presence of salt. The mutant was found to be affected in a genetic region highly homologous to genes for galactoglucan production in R. meliloti Rm2011 (expE genes). However, sequence divergence occurs in a putative expE promoter region. A transcriptional fusion of the promoter with lacZ demonstrated that, unlike R. meliloti Rm2011, galactoglucan is produced constitutively by EFB1 and that its expression is reduced 10-fold during exponential growth in the presence of salt.


2015 ◽  
Vol 35 (suppl_1) ◽  
Author(s):  
Dmitrii V Burdin ◽  
Alexey A Kolobov ◽  
Anton V Demyanov ◽  
Alexey A Soshnev ◽  
Chad N Broker ◽  
...  

Introduction: Alanine-glyoxylate aminotransferase 2 (AGXT2) is the only known enzyme capable of degradation of all three endogenous methylarginines, which serve as markers and potentially mediators of cardiovascular disease. Recent studies also suggest that AGXT2 and its alternative substrate beta-aminoisobutyric acid (BAIB) play important role in lipid metabolism. The predicted core promoter region of mammalian AGXT2 promoter contains a highly conserved putative binding site for hepatic nuclear factor 4 alpha (HNF4A). Patients with severe deficiency in HNF4a develop maturity onset diabetes of young 1. Furthermore, polymorphisms of HNF4A are associated with increased risk of diabetes type 2. The aim of this study was to test the hypothesis that HNF4A is a major regulator of AGXT2 expression and activity. Methods and results: We demonstrated direct binding of HNF4A to the Agxt2 promoter region in hepatic cell line Hepa 1-6 using chromatin immunoprecipitation assays. Then we showed that mutations of the predicted HNF4A binding site in the Agxt2 core promoter result in up to 80% decrease in the promoter activity as assessed by luciferase reporter assays (p<0.001). We used siRNA-mediated knockdown of HNF4A to determine whether this factor is required for basal Agxt2 expression in Hepa 1-6 cells. Knockdown of HNF4A led to almost 50% reduction in Agxt2 mRNA levels compared to controls (p<0.01). We took advantage of the previously characterized inducible liver-specific Hnf4a knockout (KO) mice to determine whether HNF4A regulates Agxt2 expression in vivo and showed a 90% (p<0.001) decrease in liver Agxt2 expression and a 85% (p<0.01) decrease in liver AGXT2 activity towards methylarginines in Hnf4a KO mice compared with the wild-type littermates. Finaly, on a functional level, Hnf4a KO mice had significant amounts of BAIB present in plasma, whereas BAIB was not detectable in the plasma of the wild-type littermates. Conclusions: In our study we identified HNF4A as the major regulator of Agxt2 gene expression. This finding suggests that diabetic patients with HNF4A deficiency might have a unique mechanism for development of cardiovascular complication via AGXT2-dependent impairment of lipid metabolism and methylarginines-mediated vascular dysfunction.


2005 ◽  
Vol 49 (1) ◽  
pp. 358-365 ◽  
Author(s):  
Michael R. Mulvey ◽  
Elizabeth Bryce ◽  
David A. Boyd ◽  
Marianna Ofner-Agostini ◽  
Allison M. Land ◽  
...  

ABSTRACT A study designed to gain baseline information on strains of Escherichia coli displaying resistance to cefoxitin in Canada is described. A total of 29,323 E. coli isolates were screened at 12 participating hospital sites as part of an extended-spectrum beta-lactamase surveillance initiative. A total of 411 clinically significant, nonrepeat isolates displaying reduced susceptibilities to the NCCLS-recommended beta-lactams were submitted to a central laboratory over a 1-year period ending on 30 September 2000. Two hundred thirty-two isolates were identified as resistant to cefoxitin. All cefoxitin-resistant strains were subtyped by pulsed-field gel electrophoresis, and of these, 182 strains revealed a unique fingerprint and 1 strain was untypeable. PCR and sequence analysis of the ampC promoter region revealed 51 different promoter or attenuator variants and 14 wild-type promoters. Three promoter regions were interrupted by insertion elements, two contained IS10 elements, and one contained an IS911 variant. PCR and sequence analysis for the detection of acquired AmpC resistance (by the acquisition of ACT-1/MIR-1, CMY-2, or FOX) revealed that 25 strains contained CMY-2, including 7 of the strains found to have wild-type promoters. The considerable genetic variability in both the strain fingerprint and the promoter region suggests that AmpC-type resistance may emerge spontaneously by mutation of sensitive strains rather than by the spread of strains or plasmids in the hospital setting.


2006 ◽  
Vol 188 (24) ◽  
pp. 8586-8592 ◽  
Author(s):  
Ju-Sim Kim ◽  
Sang Ho Choi ◽  
Jeong K. Lee

ABSTRACT Lysine decarboxylase expression by Vibrio vulnificus, which is up-regulated by CadC in response to acid stress, is also induced by SoxR in response to superoxide stress. SoxR binds to the promoter region of the cadBA operon, coding for a lysine-cadaverine antiporter (CadB) and a lysine decarboxylase (CadA). The induction of cadBA transcription by SoxR is independent of CadC. Cadaverine, which neutralizes the external medium, also appears to scavenge superoxide radicals, since increasing cellular cadaverine by elevating the gene dosage of cadBA significantly diminished the induction of Mn-containing superoxide dismutase under methyl viologen-induced oxidative stress. Consistently, a lack of cadaverine caused by mutation in cadA resulted in low tolerance to oxidative stress compared with that of the wild type.


2020 ◽  
Vol 71 (12) ◽  
pp. 3653-3663 ◽  
Author(s):  
Kunyang Zhuang ◽  
Jieyu Wang ◽  
Baozhen Jiao ◽  
Chong Chen ◽  
Junjie Zhang ◽  
...  

Abstract Rubisco, which consists of eight large subunits (RBCLs) and eight small subunits (RBCSs), is a major photosynthetic enzyme that is sensitive to chilling stress. However, it is largely unclear how plants maintain high Rubisco content under low temperature conditions. Here, we report that tomato WHIRLY1 (SlWHY1) positively regulates the Rubisco level under chilling stress by directly binding to the promoter region of SlRbcS1, resulting in the activation of SlRbcS1 expression. SlRbcS1-overexpressing lines had higher Rubisco contents and were more resistant to chilling stress compared with the wild type. Quantitative real-time PCR analyses showed that, among the five RbcS genes, only SlRbcS1 expression is up-regulated by chilling treatment. These results indicate that SlWHIRLY1 specifically enhances the levels of SlRbcS1 and confers tolerance to chilling stress. The amino acid sequence of SlRBCS1 shows 92.67% identity with those of another two RBCS proteins and three residues are specifically found in SlRBCS1. However, mutation of these residues to alanine in SlRBCS1 does not influence its function during cold adaptation. Thus, we conclude that high levels of Rubisco, but not the specific residues in SlRBCS1, play important roles in tolerance to chilling stress in tomato.


2015 ◽  
Vol 89 (11) ◽  
pp. 6067-6079 ◽  
Author(s):  
GuanQun Liu ◽  
Hong-Su Park ◽  
Hyun-Mi Pyo ◽  
Qiang Liu ◽  
Yan Zhou

ABSTRACTRetinoic acid-inducible gene I (RIG-I) is an important innate immune sensor that recognizes viral RNA in the cytoplasm. Its nonself recognition largely depends on the unique RNA structures imposed by viral RNA. The panhandle structure residing in the influenza A virus (IAV) genome, whose primary function is to serve as the viral promoter for transcription and replication, has been proposed to be a RIG-I agonist. However, this has never been proved experimentally. Here, we employed multiple approaches to determine if the IAV panhandle structure is directly involved in RIG-I activation and type I interferon (IFN) induction. First, in porcine alveolar macrophages, we demonstrated that the viral genomic coding region is dispensable for RIG-I-dependent IFN induction. Second, usingin vitro-synthesized hairpin RNA, we showed that the IAV panhandle structure could directly bind to RIG-I and stimulate IFN production. Furthermore, we investigated the contributions of the wobble base pairs, mismatch, and unpaired nucleotides within the wild-type panhandle structure to RIG-I activation. Elimination of these destabilizing elements within the panhandle structure promoted RIG-I activation and IFN induction. Given the function of the panhandle structure as the viral promoter, we further monitored the promoter activity of these panhandle variants and found that viral replication was moderately affected, whereas viral transcription was impaired dramatically. In all, our results indicate that the IAV panhandle promoter region adopts a nucleotide composition that is optimal for balanced viral RNA synthesis and suboptimal for RIG-I activation.IMPORTANCEThe IAV genomic panhandle structure has been proposed to be an RIG-I agonist due to its partial complementarity; however, this has not been experimentally confirmed. Here, we provide direct evidence that the IAV panhandle structure is competent in, and sufficient for, RIG-I activation and IFN induction. By constructing panhandle variants with increased complementarity, we demonstrated that the wild-type panhandle structure could be modified to enhance RIG-I activation and IFN induction. These panhandle variants posed moderate influence on viral replication but dramatic impairment of viral transcription. These results indicate that the IAV panhandle promoter region adopts a nucleotide composition to achieve optimal balance of viral RNA synthesis and suboptimal RIG-I activation. Our results highlight the multifunctional role of the IAV panhandle promoter region in the virus life cycle and offer novel insights into the development of antiviral agents aiming to boost RIG-I signaling or virus attenuation by manipulating this conserved region.


Sign in / Sign up

Export Citation Format

Share Document