scholarly journals Exopolysaccharide II Production Is Regulated by Salt in the Halotolerant Strain Rhizobium melilotiEFB1

1998 ◽  
Vol 64 (3) ◽  
pp. 1024-1028 ◽  
Author(s):  
Javier Lloret ◽  
Brande B. H. Wulff ◽  
Jose M. Rubio ◽  
J. Allan Downie ◽  
Ildefonso Bonilla ◽  
...  

ABSTRACT The halotolerant strain Rhizobium meliloti EFB1 modifies the production of extracellular polysaccharides in response to salt. EFB1 colonies grown in the presence of 0.3 M NaCl show a decrease in mucoidy, and in salt-supplemented liquid medium this organism produces 40% less exopolysaccharides. We isolated transposon-induced mutant that, when grown in the absence of salt, had a colony morphology (nonmucoid) similar to the colony morphology of the wild type grown in the presence of salt. Calcofluor fluorescence, proton nuclear magnetic resonance spectroscopy, and genetic analysis of the mutant indicated that galactoglucan, which is not produced under normal conditions by other R. meliloti strains, is produced by strain EFB1 and that production of this compound decreases when the organism is grown in the presence of salt. The mutant was found to be affected in a genetic region highly homologous to genes for galactoglucan production in R. meliloti Rm2011 (expE genes). However, sequence divergence occurs in a putative expE promoter region. A transcriptional fusion of the promoter with lacZ demonstrated that, unlike R. meliloti Rm2011, galactoglucan is produced constitutively by EFB1 and that its expression is reduced 10-fold during exponential growth in the presence of salt.

2005 ◽  
Vol 73 (6) ◽  
pp. 3749-3753 ◽  
Author(s):  
Ying Wang ◽  
Amy Liu ◽  
Casey Chen

ABSTRACT The basis of the rough-to-smooth conversion of Actinobacillus actinomycetemcomitans was examined. Smooth variants often contained mutations at the flp promoter region. Replacing the mutated flp promoter with the wild-type promoter restored the rough phenotype. The expression level of the flp promoter was ∼100-fold lower in smooth than in rough strains. Mutations of the flp promoter are a cause of the rough-to-smooth conversion.


2006 ◽  
Vol 188 (2) ◽  
pp. 507-514 ◽  
Author(s):  
William R. Will ◽  
Laura S. Frost

ABSTRACT The transfer (tra) operon of the conjugative F plasmid of Escherichia coli is a polycistronic 33-kb operon which encodes most of the proteins necessary for F-plasmid transfer. Here, we report that transcription from PY, the tra operon promoter, is repressed by the host nucleoid-associated protein, H-NS. Electrophoretic mobility shift assays indicate that H-NS binds preferentially to the tra promoter region, while Northern blot and transcriptional fusion analyses indicate that transcription of traY, the first gene in the tra operon, is derepressed in an hns mutant throughout growth. The plasmid-encoded regulatory protein TraJ is essential for transcription of the tra operon in wild-type Escherichia coli; however, TraJ is not necessary for plasmid transfer or traY operon transcription in an hns mutant. This indicates that H-NS represses transcription from PY directly and not indirectly via its effects on TraJ levels. These results suggest that TraJ functions to disrupt H-NS silencing at PY, allowing transcription of the tra operon.


Cancers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2762
Author(s):  
Samantha Di Donato ◽  
Alessia Vignoli ◽  
Chiara Biagioni ◽  
Luca Malorni ◽  
Elena Mori ◽  
...  

Adjuvant treatment for patients with early stage colorectal cancer (eCRC) is currently based on suboptimal risk stratification, especially for elderly patients. Metabolomics may improve the identification of patients with residual micrometastases after surgery. In this retrospective study, we hypothesized that metabolomic fingerprinting could improve risk stratification in patients with eCRC. Serum samples obtained after surgery from 94 elderly patients with eCRC (65 relapse free and 29 relapsed, after 5-years median follow up), and from 75 elderly patients with metastatic colorectal cancer (mCRC) obtained before a new line of chemotherapy, were retrospectively analyzed via proton nuclear magnetic resonance spectroscopy. The prognostic role of metabolomics in patients with eCRC was assessed using Kaplan–Meier curves. PCA-CA-kNN could discriminate the metabolomic fingerprint of patients with relapse-free eCRC and mCRC (70.0% accuracy using NOESY spectra). This model was used to classify the samples of patients with relapsed eCRC: 69% of eCRC patients with relapse were predicted as metastatic. The metabolomic classification was strongly associated with prognosis (p-value 0.0005, HR 3.64), independently of tumor stage. In conclusion, metabolomics could be an innovative tool to refine risk stratification in elderly patients with eCRC. Based on these results, a prospective trial aimed at improving risk stratification by metabolomic fingerprinting (LIBIMET) is ongoing.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2286
Author(s):  
Gwang-Woo Kim ◽  
Jae-Man Sim ◽  
Yutaka Itabashi ◽  
Min-Jeong Jung ◽  
Joon-Young Jun

Fatty acids in marine algae have attracted the attention of natural chemists because of their biological activity. The fatty acid compositions of the Solieriaceae families (Rhodophyceae, Gaigartinales) provide interesting information that unusual cyclic fatty acids have been occasionally found. A survey was conducted to profile the characteristic fatty acid composition of the red alga Solieria pacifica (Yamada) Yoshida using gas chromatography-mass spectrometry (GC-MS), infrared spectroscopy (IR), and proton nuclear magnetic resonance spectroscopy (1H-NMR). In S. pacifica, two cyclopentyl fatty acids, 11-cyclopentylundecanoic acid (7.0%), and 13-cyclopentyltridecanoic acid (4.9%), and a cyclopropane fatty acid, cis-11,12-methylene-hexadecanoic acid (7.9%) contributed significantly to the overall fatty acid profile. In particular, this cyclopropane fatty acid has been primarily found in bacteria, rumen microorganisms or foods of animal origin, and has not previously been found in any other algae. In addition, this alga contains a significant amount of the monoenoic acid cis-11-hexadecenoic acid (9.0%). Therefore, cis-11,12-methylene-hexadecanoic acid in S. pacifica was likely produced by methylene addition to cis-11-hexadecenoic acid.


Cancers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 374
Author(s):  
Beatriz Jiménez ◽  
Mei Ran Abellona U ◽  
Panagiotis Drymousis ◽  
Michael Kyriakides ◽  
Ashley K. Clift ◽  
...  

The incidence of neuroendocrine neoplasms (NEN) is increasing, but established biomarkers have poor diagnostic and prognostic accuracy. Here, we aim to define the systemic metabolic consequences of NEN and to establish the diagnostic utility of proton nuclear magnetic resonance spectroscopy (1H-NMR) for NEN in a prospective cohort of patients through a single-centre, prospective controlled observational study. Urine samples of 34 treatment-naïve NEN patients (median age: 59.3 years, range: 36–85): 18 had pancreatic (Pan) NEN, of which seven were functioning; 16 had small bowel (SB) NEN; 20 age- and sex-matched healthy control individuals were analysed using a 600 MHz Bruker 1H-NMR spectrometer. Orthogonal partial-least-squares-discriminant analysis models were able to discriminate both PanNEN and SBNEN patients from healthy control (Healthy vs. PanNEN: AUC = 0.90, Healthy vs. SBNEN: AUC = 0.90). Secondary metabolites of tryptophan, such as trigonelline and a niacin-related metabolite were also identified to be universally decreased in NEN patients, while upstream metabolites, such as kynurenine, were elevated in SBNEN. Hippurate, a gut-derived metabolite, was reduced in all patients, whereas other gut microbial co-metabolites, trimethylamine-N-oxide, 4-hydroxyphenylacetate and phenylacetylglutamine, were elevated in those with SBNEN. These findings suggest the existence of a new systems-based neuroendocrine circuit, regulated in part by cancer metabolism, neuroendocrine signalling molecules and gut microbial co-metabolism. Metabonomic profiling of NEN has diagnostic potential and could be used for discovering biomarkers for these tumours. These preliminary data require confirmation in a larger cohort.


2021 ◽  
Vol 9 (4) ◽  
pp. 676
Author(s):  
Ting-Yu Liu ◽  
Sheng-Hui Tsai ◽  
Jenn-Wei Chen ◽  
Yu-Ching Wang ◽  
Shiau-Ting Hu ◽  
...  

Mycobacterium abscessus is an opportunistic pathogen causing human diseases, especially in immunocompromised patients. M. abscessus strains with a rough morphotype are more virulent than those with a smooth morphotype. Morphotype switch may occur during a clinical infection. To investigate the genes involved in colony morphotype switching, we performed transposon mutagenesis in a rough clinical strain of M. abscessus. A morphotype switching mutant (smooth) named mab_3083c::Tn was obtained. This mutant was found to have a lower aggregative ability and a higher sliding motility than the wild type strain. However, its glycopeptidolipid (GPL) content remained the same as those of the wild type. Complementation of the mutant with a functional mab_3083c gene reverted its morphotype back to rough, indicating that mab_3083c is associated with colony morphology of M. abscessus. Bioinformatic analyses showed that mab_3083c has a 75.4% identity in amino acid sequence with the well-characterized ribonuclease J (RNase J) of M. smegmatis (RNase JMsmeg). Complementation of the mutant with the RNase J gene of M. smegmatis also switched its colony morphology from smooth back to rough. These results suggest that Mab_3083c is a homologue of RNase J and involved in regulating M. abscessus colony morphotype switching.


Genetics ◽  
1998 ◽  
Vol 148 (1) ◽  
pp. 13-18 ◽  
Author(s):  
Jacek Majewski ◽  
Frederick M Cohan

AbstractIn Bacillus transformation, sexual isolation is known to be an exponential function of the sequence divergence between donor and recipient. Here, we have investigated the mechanism under which sequence divergence results in sexual isolation. We tested the effect of mismatch repair by comparing a wild-type strain and an isogenic mismatch-repair mutant for the relationship between sexual isolation and sequence divergence. Mismatch repair was shown to contribute to sexual isolation but was responsible for only a small fraction of the sexual isolation observed. Another possible mechanism of sexual isolation is that more divergent recipient and donor DNA strands have greater difficulty forming a heteroduplex because a region of perfect identity between donor and recipient is required for initiation of the heteroduplex. A mathematical model showed that this heteroduplex-resistance mechanism yields an exponential relationship between sexual isolation and sequence divergence. Moreover, this model yields an estimate of the size of the region of perfect identity that is comparable to independent estimates for Escherichia coli. For these reasons, and because all other mechanisms of sexual isolation may be ruled out, we conclude that resistance to heteroduplex formation is predominantly responsible for the exponential relationship between sexual isolation and sequence divergence in Bacillus transformation.


Genetics ◽  
1996 ◽  
Vol 142 (3) ◽  
pp. 761-776 ◽  
Author(s):  
Lori A Rinckel ◽  
David J Garfinkel

Abstract In Saccharomyces cerevisiae, the target site specificity of the retrotransposon Ty1 appears to involve the Ty integration complex recognizing chromatin structures. To determine whether changes in chromatin structure affect Ty1 and Ty2 target site preference, we analyzed Ty transposition at the CAN1 locus in mutants containing altered levels of histone proteins. A Δhta1-htb1 mutant with decreased levels of H2A and H2B histone proteins showed a pattern of Ty1 and Ty2 insertions at CAN1 that was significantly different from that of both the wild-type and a Δhta2-htb2 mutant, which does not have altered histone protein levels. Altered levels of H2A and H2B proteins disrupted a dramatic orientation bias in the CAN1 promoter region. In the wild-type strains, few Ty1 and Ty2 insertions in the promoter region were oriented opposite to the direction of CAN1 transcription. In the Δhta1-htb1 background, however, numerous Ty1 and Ty2 insertions were in the opposite orientation clustered within the TATA region. This altered insertion pattern does not appear to be due to a bias caused by selecting canavanine resistant isolates in the different HTA1-HTB1 backgrounds. Our results suggest that reduced levels of histone proteins alter Ty target site preference and disrupt an asymmetric Ty insertion pattern.


1987 ◽  
Vol 252 (2) ◽  
pp. G237-G243
Author(s):  
R. E. Bailey ◽  
R. A. Levine ◽  
J. Nandi ◽  
E. H. Schwartzel ◽  
D. H. Beach ◽  
...  

The lipid profile of isolated gastric superficial epithelial cells (SEC) was evaluated by proton nuclear magnetic resonance spectroscopy (1H-NMR). The most conspicuous resonance band in SEC spectra was due to the protons of +N(CH3)3 groups of phosphatidylcholine and, to a lesser degree, other phospholipid derivatives, on the basis of their chemical shift and addition of purified phospholipids. NMR of cell lysates and phospholipid extracts of SEC in deutero-chloroform provided further spectral resolution of these components. Phospholipase or ethanol treatments of SEC produced membrane disorganization reflected as increased peak intensity of the phospholipid signals. In addition, ethanol, in a dose-dependent manner, attenuated paranitrophenyl phosphatase activity, which correlated with inhibition of total and ouabain-sensitive 86Rubidium chloride uptake by SEC. This study suggests that NMR used in conjunction with other biochemical techniques can monitor SEC membrane structure-function relationships. NMR is a potentially powerful noninvasive probe to show changes in lipid membrane organization induced by low concentrations of ethanol (1%) and may indicate an early sign of "cytotoxicity" in intact SEC.


Sign in / Sign up

Export Citation Format

Share Document