scholarly journals Effect of Ambient Temperature on Electric Vehicles’ Energy Consumption and Range: Model Definition and Sensitivity Analysis Based on Nissan Leaf Data

2019 ◽  
Vol 10 (1) ◽  
pp. 2 ◽  
Author(s):  
Paolo Iora ◽  
Laura Tribioli

In this paper, a general quasi-steady backward-looking model for energy consumption estimation of electric vehicles is presented. The model is based on a literature review of existing approaches and was set up using publicly available data for Nissan Leaf. The model has been used to assess the effect of ambient temperature on energy consumption and range, considering various reference driving cycles. The results are supported and validated using data available from an experimental campaign where the Nissan Leaf was driven to depletion across a broad range of winter ambient temperatures. The effect of ambient temperature and the consequent accessories consumption due to cabin heating are shown to be remarkable. For instance, in case of Federal Urban Driving Schedule (FUDS), simplified FUDS (SFUDS), and New European Driving Cycle (NEDC) driving cycles, the range exceeds 150 km at 20 °C, while it reduces to about 85 km and 60 km at 0 °C and −15 °C, respectively. Finally, a sensitivity analysis is reported to assess the impact of the hypotheses in the battery model and of making different assumptions on the regenerative braking efficiency.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ammar Ali Abd ◽  
Samah Zaki Naji ◽  
Ching Thian Tye ◽  
Mohd Roslee Othman

Abstract Liquefied petroleum gas (LPG) plays a major role in worldwide energy consumption as a clean source of energy with low greenhouse gases emission. LPG transportation is exhibited through networks of pipelines, maritime, and tracks. LPG transmission using pipeline is environmentally friendly owing to the low greenhouse gases emission and low energy requirements. This work is a comprehensive evaluation of transportation petroleum gas in liquid state and compressible liquid state concerning LPG density, temperature and pressure, flow velocity, and pump energy consumption under the impact of different ambient temperatures. Inevitably, the pipeline surface exchanges heat between LPG and surrounding soil owing to the temperature difference and change in elevation. To prevent phase change, it is important to pay attention for several parameters such as ambient temperature, thermal conductivity of pipeline materials, soil type, and change in elevation for safe, reliable, and economic transportation. Transporting LPG at high pressure requests smaller pipeline size and consumes less energy for pumps due to its higher density. Also, LPG transportation under moderate or low pressure is more likely exposed to phase change, thus more thermal insulation and pressure boosting stations required to maintain the phase envelope. The models developed in this work aim to advance the existing knowledge and serve as a guide for efficient design by underling the importance of the mentioned parameters.


2021 ◽  
Vol 13 (24) ◽  
pp. 13863
Author(s):  
Yana Akhtyrska ◽  
Franz Fuerst

This study examines the impact of energy management and productivity-enhancing measures, implemented as part of LEED Existing Buildings Operations and Management (EBOM) certification, on source energy use intensity and rental premiums of office spaces using data on four major US markets. Energy management practices, comprised of commissioning and advanced metering, may reduce energy usage. Conversely, improving air quality and occupant comfort in an effort to increase worker productivity may in turn lead to higher overall energy consumption. The willingness to pay for these features in rental office buildings is hypothesised to depend not only on the extent to which productivity gains enhance the profits of a commercial tenant but also on the lease arrangements for passing any energy savings to the tenant. We apply a difference-in-differences method at a LEED EBOM certification group level and a multi-level modelling approach with a panel data structure. The results indicate that energy management and indoor environment practices have the expected effect on energy consumption as described above. However, the magnitude of the achieved rental premiums appears to be independent of the lease type.


2017 ◽  
Vol 28 (7) ◽  
pp. 673-686 ◽  
Author(s):  
Pengfei Sheng ◽  
Yaping He ◽  
Xiaohui Guo

There is no consensus about the impact of urbanization on energy efficiency. We seek to fill this gap in literature using data from 78 countries for the period of 1995 through 2012. Extending the Stochastic Impacts by Regression on Population, Affluence, and Technology model, we identify the impact of urbanization on energy consumption and efficiency. Results of generalized method of moments estimation indicate that the process of urbanization leads to substantial increases in both the actual and the optimal energy consumption, but a decrease in efficiency of energy use. In addition, we find that the extent to which energy inefficiency correlates with urbanization is greater in countries with higher gross domestic product per capita.


2020 ◽  
Vol 11 (2) ◽  
pp. 31 ◽  
Author(s):  
Heejung Jung

Hybrid electric vehicles (HEVs) and plug-in hybrid electric vehicles (PHEVs) are evolving rapidly since the introduction of Toyota Prius into the market in 1997. As the world needs more fuel-efficient vehicles to mitigate climate change, the role of HEVs and PHEVs are becoming ever more important. While fuel economies of HEVs and PHEVs are superior to those of internal combustion engine (ICE) powered vehicles, they are partially powered by batteries and therefore they resemble characteristics of battery electric vehicles (BEVs) such as dependence of fuel economy on ambient temperatures. It is also important to understand how different extent of hybridization (a.k.a., hybridization ratio) affects fuel economy under various driving conditions. In addition, it is of interest to understand how HEVs and PHEVs compare with BEVs at a similar vehicle weight. This study investigated the relationship between vehicle mass and vehicle performance parameters, mainly fuel economy and driving range of PHEVs focused on 2018 and 2019 model years using the test data available from fuel economy website of the US Environmental Protection Agency (EPA). Previous studies relied on modeling to understand mass impact on fuel economy for HEV as there were not enough number of HEVs in the market to draw a trendline at the time. The study also investigated the effect of ambient temperature for HEVs and PHEVs and kinetic energy recovery of the regenerative braking using the vehicle testing data for model year 2013 and 2015 from Idaho National Lab (INL). The current study assesses current state-of-art for PHEVs. It also provides analysis of experimental results for validation of vehicle dynamic and other models for PHEVs and HEVs.


Author(s):  
Neda Razi

Optimization of a large gas transmission pipeline results in reduced fuel consumption or higher capability and improves pipeline operation. In the current study, we have done an extensive research to optimize the operation of a huge NPS 56 pipeline system using gas cooling. This gas transmission line (the 4th major gas transmission pipeline of the National Iranian Gas Company, NIGC, or IGAT4) is designed to move over 110 MMSCMD (4.0 BCFD) of natural gas from the Assaluyeh Gas Refinery. This gas refinery which in turn receives gas from the huge gas reservoir of the South Pars Field (Iranian off-shore) is located in the south of Iran. The length of this system is over 800 kms (500 miles) with over 700 MW of compression power and aerial coolers at all compressor stations. This system passes through a very tortuous terrain with significant changes in elevation and ambient temperature which makes the optimization process even more challenging. The main objective of this project was to develop a customized tool to optimize the operation (energy consumption) of this gas transmission pipeline with all the existing system variables. The emphasis was on the impact of gas cooling (effective operation of aerial coolers) on the optimization process which in turn leads to the fuel minimization or higher capability. In this process, the impact of ambient temperature, soil temperature throughout the entire route of the pipeline, cost of electricity & fuel gas, heat transfer and Joule-Thompson effect were carefully considered. The tool was finally developed and was successfully tested on this gas transmission system which resulted in extremely accurate results. This tool could be further generalized to be used for other transmission systems.


2021 ◽  
Vol 11 (1) ◽  
pp. 425-434
Author(s):  
Jacek Pielecha ◽  
Kinga Skobiej ◽  
Karolina Kurtyka

Abstract In order to better reflect the actual ecological performance of vehicles in traffic conditions, both the emission standards and the applied emission tests are being developed, for example by considering exhaust emissions for a cold engine start. This article presents the research results on the impact of ambient temperature during the cold start of a gasoline engine in road emission tests. The Real Driving Emissions (RDE) tests apply to passenger cars that meet the Euro 6 emissions norm and they are complementary to their type approval tests. A portable emissions measurement system was used to record the engine and vehicle operating parameters, as well as to measure the exhaust emissions during tests. This allowed for parameters such as engine load, engine speed and vehicle speed to be monitored. The cold start conditions for two different temperatures (8°C and 25°C) were compared in detail. Moreover, the engine operating parameters, exhaust concentration values and road emissions for the 300 s time interval, were compared. The summary of the article presents the share of a passenger car’s cold start phase for each exhaust compound in the urban part of the test and in the entire Real Driving Emissions test depending on the ambient temperature.


2011 ◽  
Vol 32 (4) ◽  
pp. 377-383 ◽  
Author(s):  
Sung-Hwan Cho ◽  
Hyeong-Jung Kim ◽  
M Zaheeruddin

Because of the rapid rise in ambient temperatures in urban cities due to global warming, this research study was conducted to revise the heating degree days (HDDs) for main cities of South Korea. Current HDDs used in the design of heating systems were established some 30 years ago. Therefore, there is a need to revisit and revise the HDDs used in Korea. The HDDs were computed at five different indoor set-point and unloaded temperatures. The validity of the methodology used for computing HDDs was ascertained by comparing the calculated HDDs with the published values. The impact of the length of time on total annual HDDs was examined. The results show that higher temperature trends due to global warming witnessed over the past decade in general decreased the HDDs. The impact was higher for warmer climate cities than the cold regions. The revised annual HDDs for 15 major cities of South Korea are presented in this paper. Practical applications: The HDDs corrected for global warming effects for 15 major cities of South Korea presented in this article are useful for designers in estimating the impact on equipment size and energy consumption. Towards this end, several scenarios of global warming effects are presented by assuming several unloaded temperature levels. This is useful for the designers in examining the uncertainties in the estimation of energy consumption. The results published are also important for policy makers in South Korea to examine the need for revising the degree day database in light of the global warming trends.


Author(s):  
Cathrine Stephansen ◽  
Anders Bjørgesæter ◽  
Odd Willy Brude ◽  
Ute Brönner ◽  
Tonje Waterloo Rogstad ◽  
...  

AbstractTo validate the predictive capability of ERA Acute, a study was carried out using data from two well-studied historic oil spills, the Exxon Valdez Oil Spill (EVOS) and the Deepwater Horizon Oil Spill (DHOS) incidents. Results from the case studies with ERA Acute were compared to the impact estimates and recovery observations that have been reported in the extensive research following the two incidents. Resource data relevant for each of the two incidents were reconstructed within the analysis area. Performance boundaries were set up for evaluating the ERA Acute results, based on the ranges of the impact and recovery estimates reported in the post-spill assessments. Validation of an oil spill ERA model against post-spill assessments of historic spills is a challenging exercise due to scientific limitations of both. ERA Acute performed satisfactorily compared to the performance boundaries and the study gave useful insight into the predictive capabilities of ERA Acute. The results from the study were used to evaluate between two different impact models and to increase the individual vulnerability of cetaceans.


Sign in / Sign up

Export Citation Format

Share Document