In Vitro Models to Study Mechanisms of Lung Toxicity

1990 ◽  
Vol 18 (1_part_1) ◽  
pp. 267-281
Author(s):  
Åke Ryrfeldt ◽  
Ian A. Cotgreave ◽  
Peter Moldéus

Several functioning in vitro systems of varying complexity are currently in use for the study of mechanisms of lung toxicity. The isolated perfused lung is the model closest to the in vivo situation. It is a suitable model for combining metabolic and functional studies. It is, for instance, possible to relate changes in lung mechanics and lung perfusion flow to the release of various mediators during exposure of the lung to various agents. A simpler model may be constructed from lung slices which are less viable but suitable for uptake as well as metabolism studies. Specific lung cells such as Clara cells and type II pneumocytes have been isolated and cultured and are valuable tools for studies of the molecular mechanisms of lung toxicity, particularly in cases of cell-specific toxicity. There is, however, a great need to develop techniques for the isolation and culture of other types of lung cells and also to improve the culturing techniques for those already isolated.

2014 ◽  
Vol 307 (6) ◽  
pp. L449-L459 ◽  
Author(s):  
Seong Chul Kim ◽  
Thomas Kellett ◽  
Shaohua Wang ◽  
Miyuki Nishi ◽  
Nagaraja Nagre ◽  
...  

The molecular mechanisms for lung cell repair are largely unknown. Previous studies identified tripartite motif protein 72 (TRIM72) from striated muscle and linked its function to tissue repair. In this study, we characterized TRIM72 expression in lung tissues and investigated the role of TRIM72 in repair of alveolar epithelial cells. In vivo injury of lung cells was introduced by high tidal volume ventilation, and repair-defective cells were labeled with postinjury administration of propidium iodide. Primary alveolar epithelial cells were isolated and membrane wounding and repair were labeled separately. Our results show that absence of TRIM72 increases susceptibility to deformation-induced lung injury whereas TRIM72 overexpression is protective. In vitro cell wounding assay revealed that TRIM72 protects alveolar epithelial cells through promoting repair rather than increasing resistance to injury. The repair function of TRIM72 in lung cells is further linked to caveolin 1. These data suggest an essential role for TRIM72 in repair of alveolar epithelial cells under plasma membrane stress failure.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi50-vi50
Author(s):  
Tiantian Cui ◽  
Erica Hlavin Bell ◽  
Joseph McElroy ◽  
Kevin Liu ◽  
Pooja Manchanda Gulati ◽  
...  

Abstract BACKGROUND Glioblastomas (GBMs) are the most aggressive primary brain tumors, with an average survival time of less than 15 months. miRNAs are emerging as promising and novel biomarkers in GBM. The aims of this study are: 1) to investigate novel miRNAs biomarkers that affect tumorigenesis and therapeutic sensitivity, and 2) to study the underlying molecular mechanisms in GBM. METHODS Nanostring v3 was performed followed by univariable (UVA) and multivariable (MVA) analyses. Functional studies were conducted to define the role of miR-146a in GBM tumorigenesis and therapeutic response and the molecular mechanisms were investigated. RESULTS UVA analyses demonstrated that miR-146a is one of the top miRNAs that correlated with better prognosis in GBM patients (p=9.21E-05), which was independent of MGMT promoter methylation by MVA analyses (p< 0.001). miR-146a expression was significantly downregulated in recurrent GBM tumors compared with the paired primary GBM tumors (p=0.003). Overexpression of miR-146a significantly inhibited tumor cell growth and sensitized patient-derived primary GBM cells to temozolomide (TMZ) treatment in vitro, and showed statistically significant smaller tumor size (p< 0.01) and prolonged survival (p=0.001) in vivo. In addition, miR-146a is downregulated in glioma cancer stem cells, and overexpression of miR-146a significantly affected glioma cancer stem cell self-renewal. We also found that overexpression of miR-146a significantly inhibited the NF-κB, AKT, and ERK pathways. CONCLUSION Our data suggest, for the first time, that miR-146a predicts favorable prognosis for GBM patients and sensitizes primary GBM cells to TMZ treatment in vitro and in vivo through regulating glioma stem cells. Importantly, miR-146a may prove to be a master switch shutting off AKT, NF-κB, as well as other pathways and may overcome redundancies among these pathways leading to resistance. FUNDING: Bohnenn Fund (to PR), R01CA108633, R01CA169368, U10CA180850-01(NCI), Brain Tumor Funders Collaborative Grant, and The Ohio State University CCC (all to AC).


2006 ◽  
Vol 175 (1) ◽  
pp. 99-110 ◽  
Author(s):  
Natasha Y. Frank ◽  
Alvin T. Kho ◽  
Tobias Schatton ◽  
George F. Murphy ◽  
Michael J. Molloy ◽  
...  

Skeletal muscle side population (SP) cells are thought to be “stem”-like cells. Despite reports confirming the ability of muscle SP cells to give rise to differentiated progeny in vitro and in vivo, the molecular mechanisms defining their phenotype remain unclear. In this study, gene expression analyses of human fetal skeletal muscle demonstrate that bone morphogenetic protein 4 (BMP4) is highly expressed in SP cells but not in main population (MP) mononuclear muscle-derived cells. Functional studies revealed that BMP4 specifically induces proliferation of BMP receptor 1a–positive MP cells but has no effect on SP cells, which are BMPR1a-negative. In contrast, the BMP4 antagonist Gremlin, specifically up-regulated in MP cells, counteracts the stimulatory effects of BMP4 and inhibits proliferation of BMPR1a-positive muscle cells. In vivo, BMP4-positive cells can be found in the proximity of BMPR1a-positive cells in the interstitial spaces between myofibers. Gremlin is expressed by mature myofibers and interstitial cells, which are separate from BMP4-expressing cells. Together, these studies propose that BMP4 and Gremlin, which are highly expressed by human fetal skeletal muscle SP and MP cells, respectively, are regulators of myogenic progenitor proliferation.


2021 ◽  
Author(s):  
Rachel M McLaughlin ◽  
Amanda Laguna ◽  
Ilayda Top ◽  
Christien Hernadez ◽  
Liane L Livi ◽  
...  

Stroke is a devastating neurological disorder and a leading cause of death and long-term disability. Despite many decades of research, there are still very few therapeutic options for patients suffering from stroke or its consequences. This is partially due to the limitations of current research models, including traditional in vitro models which lack the three-dimensional (3D) architecture and cellular make-up of the in vivo brain. 3D spheroids derived from primary postnatal rat cortex provide an in vivo-relevant model containing a similar cellular composition to the native cortex and a cell-synthesized extracellular matrix. These spheroids are cost-effective, highly reproducible, and can be produced in a high-throughput manner, making this model an ideal candidate for screening potential therapeutics. To study the cellular and molecular mechanisms of stroke in this model, spheroids were deprived of glucose, oxygen, or both oxygen and glucose for 24 hours. Both oxygen and oxygen-glucose deprived spheroids demonstrated many of the hallmarks of stroke, including a decrease in metabolism, an increase in neural dysfunction, and an increase in reactive astrocytes. Pretreatment of spheroids with the antioxidant agent N-acetylcysteine (NAC) mitigated the decrease in ATP seen after 24 hours of oxygen-glucose deprivation. Together, these results show the utility of our 3D cortical spheroid model for studying ischemic injury and its potential for screening stroke therapeutics.


2014 ◽  
Vol 307 (8) ◽  
pp. G777-G792 ◽  
Author(s):  
Victoria G. Weis ◽  
Christine P. Petersen ◽  
Jason C. Mills ◽  
Pamela L. Tuma ◽  
Robert H. Whitehead ◽  
...  

Oxyntic atrophy in the stomach leads to chief cell transdifferentiation into spasmolytic polypeptide expressing metaplasia (SPEM). Investigations of preneoplastic metaplasias in the stomach are limited by the sole reliance on in vivo mouse models, owing to the lack of in vitro models for distinct normal mucosal lineages and metaplasias. Utilizing the Immortomouse, in vitro cell models of chief cells and SPEM were developed to study the characteristics of normal chief cells and metaplasia. Chief cells and SPEM cells isolated from Immortomice were cultured and characterized at both the permissive (33°C) and the nonpermissive temperature (39°C). Clones were selected on the basis of their transcriptional expression of specific stomach lineage markers (named ImChief and ImSPEM) and protein expression and growth were analyzed. The transcriptional expression profiles of ImChief and ImSPEM cells were compared further by using gene microarrays. ImChief cells transcriptionally express most chief cell markers and contain pepsinogen C and RAB3D-immunostaining vesicles. ImSPEM cells express the SPEM markers TFF2 and HE4 and constitutively secrete HE4. Whereas ImChief cells cease proliferation at the nonpermissive temperature, ImSPEM cells continue to proliferate at 39°C. Gene expression profiling of ImChief and ImSPEM revealed myelin and lymphocyte protein 2 (MAL2) as a novel marker of SPEM lineages. Our results indicate that the expression and proliferation profiles of the novel ImChief and ImSPEM cell lines resemble in vivo chief and SPEM cell lineages. These cell culture lines provide the first in vitro systems for studying the molecular mechanisms of the metaplastic transition in the stomach.


2021 ◽  
Author(s):  
Chunchun Ma ◽  
Hongliang Wang ◽  
Gang Zong ◽  
Jie He ◽  
Yuyang Wang ◽  
...  

Abstract Background: Accumulating evidences revealed that long noncoding RNAs (lncRNAs) have been participated in cancer malignant progression, including glioblastoma multiforme (GBM). Despite much studies have found the precise biological role in the regulatory mechanisms of GBM,however the molecular mechanisms,particularly upstream mechanisms still need further elucidated. Methods: RT-QPCR, cell transfection, western blotting and bioinformatic analysis were executed to detect the expression of EGR1, HNF1A-AS1, miR-22-3p and ENO1 in GBM. Cell proliferation assay, colony formation assay, wound healing, migration and invasion assays were performed to detect the malignant characters of GBM cell. The molecular regulation mechanism was confirmed by luciferase reporter assay, ChIP and RIP. Finally, orthotopic mouse models were established to examine the effect of HNF1A-AS1 in vivo.Results: In the current study, we analyzed clinical samples to show that the long non-coding antisense transcript of HNF1A, HNF1A-AS1, is upregulated and associated with poor prognosis in GBM. Functional studies revealed that knockdown of HNF1A-AS1 markedly inhibits cell proliferation, migration and invasion both in vitro and in vivo, whereas overexpression of HNF1A-AS1 exerts opposite effect. Mechanistically, the transcription factor EGR1 forced the transcription of HNF1A-AS1 by directly binding the promoter region of HNF1A-AS1. Furthermore, combined bioinformatics analysis with our mechanistic work, using luciferase reporter assays and RIP, we first demonstrated that HNF1A-AS1 functions as a competing endogenous RNA (ceRNA) with miR-22-3p to regulate ENO1 expression in GBM cells. HNF1A-AS1 directly binds to miR-22-3p and significantly inhibits miR-22-3p expression, while ENO1 expression was increased. miR-22-3p inhibitor offsets the HNF1A-AS1 silencing induced suppression in proliferation, migration and invasion of GBM cells, as well as promotion effect on ENO1 expression. ENO1 was verified as a direct target of miR-22-3p and its expression levels was negatively with the prognosis in GBM patients. Conclusion: Taken together, our study illuminated the definite mechanism of HNF1A-AS1 in promoting GBM malignancy, and provided a novel therapeutic target for further clinical application.


Author(s):  
Maria Virginia Caballero ◽  
Manila Candiracci

Embryonic and larval Danio rerio is increasingly used as a toxicological model to conduct rapid in vivo tests and developmental toxicity assays; the zebrafish features as high genetic homology to mammals; robust phenotypes; and its value in high-throughput genetic and chemical screening have made it a powerful tool to evaluate in vivo toxicity. New methodologies of genome editing as CRISPR/Cas9; ZFN or Talen make it a suitable model to perform studies to pair human genetic diseases as well. This review surveys recent studies; employing zebrafish as experimental model; comparing it with other in vivo and in vitro models; presenting zebrafish as a potent vertebrate tool to evaluate drug toxicity to facilitate more extensive; easy and comprehensive knowledge of new generation drugs.


Author(s):  
Meng Cao ◽  
Yi Wang ◽  
Yijing Xiao ◽  
Dandan Zheng ◽  
Chunchun Zhi ◽  
...  

Abstract Background Colorectal cancer (CRC) is a common tumor characterized by its high mortality. However, the underlying molecular mechanisms that drive CRC tumorigenesis are unclear. Clock genes have important roles in tumor development. In the present study, the expression and functions of clock gene TIMELESS (encoding the Timeless protein) in CRC were investigated. Methods Immunohistochemistry, cell proliferation, migration, invasion, EMT and xenograft tumor experiments were used to prove the function of Timeless in the tumorigenesis of CRC. Immunoprecipitation, mass spectrometry, Immunofluorescence and Chromatin immunoprecipitation (ChIP) were utilized to clarify the mechanism of Timeless in regulating CRC tumorigenesis. Results We found that Timeless was upregulated in CRC tissues compared with corresponding normal tissues and its expression was closely associated with the TNM stages and overall survival of CRC patients. Functional studies demonstrated that Timeless promoted the proliferation, invasion, and EMT of CRC cells in vitro and in vivo. Mechanistic investigations showed that Timeless activated the β-catenin signal pathway by binding to Myosin-9, which binds to β-catenin to induce its nuclear translocation. The upregulation of Timeless was attributed to CREB-binding protein (CBP)/p300-mediated H3K27 acetylation of the promoter region of Timeless. Conclusion Timeless regulates the tumorigenesis of CRC by binding to and regulating myosin-9, suggesting Timeless might be a potential prognostic biomarker and therapeutic target for CRC.


2005 ◽  
Vol 152 (3) ◽  
pp. 363-370 ◽  
Author(s):  
P L Hanson ◽  
S J B Aylwin ◽  
J P Monson ◽  
J M Burrin

Objective: Non-functioning pituitary adenomas (NFPAs) are characterised by the lack of symptoms of hormone hypersecretory syndromes but in vitro studies have demonstrated that tumour cells may stain for gonadotrophins and/or their α- or β-subunits. In this study, we aimed to examine the pattern of secretion of LH and FSH from a series of pituitary adenomas cultured in vitro and where data were available to relate the results to pre-operative serum gonadotrophin levels. Methods: The in vitro secretion of LH and FSH was measured from 46 cultured NFPAs and compared with pre-operative serum gonadotrophin levels in 38 patients. Peritumorous ‘normal’ pituitary cell cultures from 20 additional pituitary tumour patients were used for comparison with the NFPA group. Results: A median pre-operative LH:FSH ratio of 0.33:1 was found in 38 patients with NFPAs. Preferential secretion of FSH was also documented from media of 46 NFPAs cultured in vitro with a median LH:FSH ratio of 0.32:1. A significant correlation (r = 0.43, P < 0.01) was observed between serum and media levels of FSH but not LH. Peritumorous ‘normal’ pituitary cells released LH and FSH in a reversed ratio (median LH:FSH ratio = 3.6:1, P < 0.01 compared with NFPAs). Conclusions: This study has evaluated pre-operative serum gonadotrophin levels and in vitro release of hormones in cultures of surgically removed tissue from patients with NFPAs. The data suggest preferential secretion of FSH occurs both in vitro and in vivo. By demonstrating that NFPAs cultured in vitro reflect the in vivo situation of preferential secretion of FSH, it may be possible in future to perform functional studies using this system to elucidate the cellular and molecular mechanisms involved in the development of an imbalance in gonadotroph cells preferentially overproducing FSH in NFPAs.


Toxins ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 875
Author(s):  
Jinjin She ◽  
Nannan Feng ◽  
Wanglong Zheng ◽  
Hao Zheng ◽  
Peirong Cai ◽  
...  

Zearalenone (ZEA), a common mycotoxin in grains and animal feeds, has been associated with male reproductive disorders. However, the potential toxicity mechanism of ZEA is not fully understood. In this study, in vivo and in vitro models were used to explore the effects of ZEA on the blood–testis barrier (BTB) and related molecular mechanisms. First, male BALB/C mice were administered ZEA orally (40 mg/kg·bw) for 5–7 d. Sperm motility, testicular morphology, and expressions of BTB junction proteins and autophagy-related proteins were evaluated. In addition, TM4 cells (mouse Sertoli cells line) were used to delineate the molecular mechanisms that mediate the effects of ZEA on BTB. Our results demonstrated that ZEA exposure induced severe testicular damage in histomorphology and an ultrastructural, time-dependent decrease in the expression of blood–testis barrier junction-related proteins, accompanied by an increase in the expression of autophagy-related proteins. Additionally, similar to the in vitro results, the dose-dependent treatment of ZEA increased the level of cytoplasmic Ca2+ and the levels of the autophagy markers LC3-II and p62, in conjunction with a decrease in the BTB junction proteins occludin, claudin-11, and Cx43, with the dislocation of the gap junction protein Cx43. Meanwhile, inhibition of autophagy by CQ and 3-MA or inhibition of cytoplasmic Ca2+ by BAPTA-AM was sufficient to reduce the effects of ZEA on the TM4 cell BTB. To summarize, this study emphasizes the role of Ca2+-mediated autophagy in ZEA-induced BTB destruction, which deepens our understanding of the molecular mechanism of ZEA-induced male reproductive disorders.


Sign in / Sign up

Export Citation Format

Share Document