Bidirectional influence of amygdala β1-adrenoceptors blockade on cannabinoid signaling in contextual and auditory fear memory

2018 ◽  
Vol 32 (8) ◽  
pp. 932-942 ◽  
Author(s):  
Mohammad Nasehi ◽  
Saman Shahbazzadeh ◽  
Mohaddeseh Ebrahimi-Ghiri ◽  
Mohammad-Reza Zarrindast

The basolateral amygdala (BLA) is a major target and modulator of stress and has a critical role in the neural circuitry presenting learned fear behaviors. On the other hand, both the endocannabinoid and noradrenergic systems may be involved in regulating the stress responses, fear, and anxiety. Considering the aforementioned, we have investigated the involvement of the BLA β1-adrenoceptors in conditioned fear responses induced by ACPA, a CB1 receptor (CB1R) agonist. In adult male NMRI mice, freezing responses to context and cue were measured using a Pavlovian fear conditioning apparatus. Pre-training intra-BLA microinjection of xamoterol (0.01 and 0.02 µg/mouse), a partial β1-adrenoceptor agonist, or atenolol (0.5 µg/mouse), a β1-adrenoceptor antagonist, decreased freezing behavior, which suggests an impairment of contextual and auditory fear retrieval. Similar results were found with pre-training intraperitoneal administration of ACPA (0.5 mg/kg). A sub-threshold dose of xamoterol, infused into the BLA, decreased ACPA (0.005 and 0.05 mg/kg) effect on both memories, while atenolol increased ACPA response to the context at the middle dose and decreased ACPA response to the tone at the lower dose. It can be concluded that the blockade of BLA β1-adrenoceptors differentially affects ACPA response on the contextual and auditory conditioned fear memories.

2007 ◽  
Vol 98 (6) ◽  
pp. 3185-3196 ◽  
Author(s):  
Anna K. Läck ◽  
Marvin R. Diaz ◽  
Ann Chappell ◽  
Dustin W. DuBois ◽  
Brian A. McCool

Withdrawal anxiety is a significant factor contributing to continued alcohol abuse in alcoholics. This anxiety is long-lasting, can manifest well after the overt physical symptoms of withdrawal, and is frequently associated with relapse in recovering alcoholics. The neurobiological mechanisms governing these withdrawal-associated increases in anxiety are currently unknown. The basolateral amygdala (BLA) is a major emotional center in the brain and regulates the expression of both learned fear and anxiety. Neurotransmitter system alterations within this brain region may therefore contribute to withdrawal-associated anxiety. Because evidence suggests that glutamate-gated neurotransmitter receptors are sensitive to acute ethanol exposure, we examined the effect of chronic intermittent ethanol (CIE) and withdrawal (WD) on glutamatergic synaptic transmission in the BLA. We found that slices prepared from CIE and WD animals had significantly increased contributions by synaptic NMDA receptors. In addition, CIE increased the amplitude of AMPA-receptor–mediated spontaneous excitatory postsynaptic currents (sEPSCs), whereas only WD altered the amplitude and kinetics of tetrodotoxin-resistant spontaneous events (mEPSCs). Similarly, the frequency of sEPSCs was increased in both CIE and WD neurons, although only WD increased the frequency of mEPSCs. These data suggest that CIE and WD differentially alter both pre- and postsynaptic properties of BLA glutamatergic synapses. Finally, we show that microinjection of the AMPA-receptor antagonist, DNQX, can attenuate withdrawal-related anxiety-like behavior. Together, our results suggest that increased glutamatergic function may contribute to anxiety expressed during withdrawal from chronic ethanol.


2011 ◽  
Vol 70 (5) ◽  
pp. 425-433 ◽  
Author(s):  
Allison T. Knoll ◽  
John W. Muschamp ◽  
Stephanie E. Sillivan ◽  
Deveroux Ferguson ◽  
David M. Dietz ◽  
...  

2019 ◽  
Vol 30 (3) ◽  
pp. 325-337 ◽  
Author(s):  
Marcus L. Brandão ◽  
Norberto C. Coimbra

Abstract Pharmacological and molecular imaging studies in anxiety disorders have primarily focused on the serotonin system. In the meantime, dopamine has been known as the neurotransmitter of reward for 60 years, particularly for its action in the nervous terminals of the mesocorticolimbic system. Interest in the mediation by dopamine of the well-known brain aversion system has grown recently, particularly given recent evidence obtained on the role of D2 dopamine receptors in unconditioned fear. However, it has been established that excitation of the mesocorticolimbic pathway, originating from dopaminergic (DA) neurons from the ventral tegmental area (VTA), is relevant for the development of anxiety. Among the forebrain regions innervated by this pathway, the amygdala is an essential component of the neural circuitry of conditioned fear. Current findings indicate that the dopamine D2 receptor-signaling pathway connecting the VTA to the basolateral amygdala modulates fear and anxiety, whereas neural circuits in the midbrain tectum underlie the expression of innate fear. The A13 nucleus of the zona incerta is proposed as the origin of these DA neurons projecting to caudal structures of the brain aversion system. In this article we review data obtained in studies showing that DA receptor-mediated mechanisms on ascending or descending DA pathways play opposing roles in fear/anxiety processes. Dopamine appears to mediate conditioned fear by acting at rostral levels of the brain and regulate unconditioned fear at the midbrain level.


eLife ◽  
2022 ◽  
Vol 11 ◽  
Author(s):  
Miguel Antonio Xavier de Lima ◽  
Marcus Vinicius C Baldo ◽  
Fernando A Oliveira ◽  
Newton Sabino Canteras

Predator exposure is a life-threatening experience and elicits learned fear responses to the context in which the predator was encountered. The anterior cingulate area (ACA) occupies a pivotal position in a cortical network responsive to predatory threats, and it exerts a critical role in processing fear memory. The experiments were made in mice and revealed that the ACA is involved in both the acquisition and expression of contextual fear to predatory threat. Overall, the ACA can provide predictive relationships between the context and the predator threat and influences fear memory acquisition through projections to the basolateral amygdala and perirhinal region and the expression of contextual fear through projections to the dorsolateral periaqueductal gray. Our results expand previous studies based on classical fear conditioning and open interesting perspectives for understanding how the ACA is involved in processing contextual fear memory to ethologic threatening conditions that entrain specific medial hypothalamic fear circuits.


2021 ◽  
Author(s):  
Miguel Antonio Xavier de Lima ◽  
Marcus Vinicius C. Baldo ◽  
Fernando A. Oliveira ◽  
Newton Sabino Canteras

ABSTRACTPredator exposure is a life-threatening experience and elicits learned fear responses to the context in which the predator was encountered. The anterior cingulate area (ACA) occupies a pivotal position in a cortical network responsive to predatory threats, and it exerts a critical role in processing fear memory. Ours results revealed that the ACA is involved in both the acquisition and expression of contextual fear to predatory threat. Overall, the ACA can provide predictive relationships between the context and the predator threat and influences fear memory acquisition through projections to the basolateral amygdala and perirhinal region and the expression of contextual fear through projections to the dorsolateral periaqueductal gray. Our results expand previous studies based on classical fear conditioning and open interesting perspectives for understanding how the ACA is involved in processing contextual fear memory to ethologic threatening conditions that entrain specific medial hypothalamic fear circuits (i.e., predator- and conspecific-responsive circuits).


2006 ◽  
Vol 29 (1) ◽  
pp. 80-85 ◽  
Author(s):  
Martín Cammarota ◽  
Lia R M Bevilaqua ◽  
Mônica R M Vianna ◽  
Jorge H Medina ◽  
Iván Izquierdo

OBJECTIVE: Through association, a large variety of stimuli acquire the property of signaling pleasant or aversive events. Pictures of a wedding or of a plane disaster may serve as cues to recall these events and/or others of a similar nature or emotional tone. Presentation of the cues unassociated with the events, particularly if repeated, reduces the tendency to retrieve the original learning based on that association. This attenuation of the expression of a learned response was discovered by Pavlov 100 years ago, who called it extinction. In this article we review some of the most recent findings about the behavioral and biochemical properties of extinction. RESULTS AND DISCUSSION: It has been shown that extinction is a new learning based on a new link formed by the cues and the absence of the original event(s) which originated the first association. Extinction does not consist of the erasure of the original memory, but of an inhibition of its retrieval: the original response reappears readily if the former association is reiterated, or if enough time is allowed to pass (spontaneous recovery). Extinction requires neural activity, signaling pathways, gene expression and protein synthesis in the ventromedial prefrontal cortex and/or basolateral amygdala, hippocampus, entorhinal cortex and eventually other areas. The site or sites of extinction vary with the task. CONCLUSIONS: Extinction was advocated by Freud in the 1920's for the treatment of phobias, and is used in cognitive therapy to treat diseases that rely on conditioned fear (phobias, panic, and particularly posttraumatic stress disorder). The treatment of learned fear disorders with medications is still unsatisfactory although some have been shown useful when used as adjuncts to behavioral therapy.


Pathogens ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 286
Author(s):  
Mary Frances Nakamya ◽  
Moses B. Ayoola ◽  
Leslie A. Shack ◽  
Mirghani Mohamed ◽  
Edwin Swiatlo ◽  
...  

Polyamines such as putrescine, cadaverine, and spermidine are small cationic molecules that play significant roles in cellular processes, including bacterial stress responses and host–pathogen interactions. Streptococcus pneumoniae is an opportunistic human pathogen, which causes several diseases that account for significant morbidity and mortality worldwide. As it transits through different host niches, S. pneumoniae is exposed to and must adapt to different types of stress in the host microenvironment. We earlier reported that S. pneumoniae TIGR4, which harbors an isogenic deletion of an arginine decarboxylase (ΔspeA), an enzyme that catalyzes the synthesis of agmatine in the polyamine synthesis pathway, has a reduced capsule. Here, we report the impact of arginine decarboxylase deletion on pneumococcal stress responses. Our results show that ΔspeA is more susceptible to oxidative, nitrosative, and acid stress compared to the wild-type strain. Gene expression analysis by qRT-PCR indicates that thiol peroxidase, a scavenger of reactive oxygen species and aguA from the arginine deiminase system, could be important for peroxide stress responses in a polyamine-dependent manner. Our results also show that speA is essential for endogenous hydrogen peroxide and glutathione production in S. pneumoniae. Taken together, our findings demonstrate the critical role of arginine decarboxylase in pneumococcal stress responses that could impact adaptation and survival in the host.


2009 ◽  
Vol 296 (4) ◽  
pp. C766-C782 ◽  
Author(s):  
Sharon Tsang ◽  
Stanley S. C. Wong ◽  
Song Wu ◽  
Gennadi M. Kravtsov ◽  
Tak-Ming Wong

We hypothesized that testosterone at physiological levels enhances cardiac contractile responses to stimulation of both α1- and β1-adrenoceptors by increasing Ca2+ release from the sarcoplasmic reticulum (SR) and speedier removal of Ca2+ from cytosol via Ca2+-regulatory proteins. We first determined the left ventricular developed pressure, velocity of contraction and relaxation, and heart rate in perfused hearts isolated from control rats, orchiectomized rats, and orchiectomized rats without and with testosterone replacement (200 μg/100 g body wt) in the presence of norepinephrine (10−7 M), the α1-adrenoceptor agonist phenylephrine (10−6 M), or the nonselective β-adrenoceptor agonist isoprenaline (10−7 M) in the presence of 5 × 10−7 M ICI-118,551, a β2-adrenoceptor antagonist. Next, we determined the amplitudes of intracellular Ca2+ concentration transients induced by electrical stimulation or caffeine, which represent, respectively, Ca2+ release via the ryanodine receptor (RyR) or releasable Ca2+ in the SR, in ventricular myocytes isolated from the three groups of rats. We also measured 45Ca2+ release via the RyR. We then determined the time to 50% decay of both transients, which represents, respectively, Ca2+ reuptake by sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) and removal via the sarcolemmal Na+/Ca2+ exchanger (NCX). We correlated Ca2+ removal from the cytosol with activities of SERCA and its regulator phospholamban as well as NCX. The results showed that testosterone at physiological levels enhanced positive inotropic and lusitropic responses to stimulation of α1- and β1-adrenoceptors via the androgen receptor. The increased contractility and speedier relaxation were associated with increased Ca2+ release via the RyR and faster Ca2+ removal out of the cytosol via SERCA and NCX.


1985 ◽  
Vol 108 (2) ◽  
pp. 184-191 ◽  
Author(s):  
Bo Ahrén

Abstract. The effects of various α-adrenoceptor agonists and antagonists on blood radioiodine levels were studied in mice pre-treated with 125I and thyroxine. The non-selective α-adrenoceptor agonist noradrenaline and the selective α1-adrenoceptor agonist phenylephrine both enhanced blood radioiodine levels. Noradrenaline was more potent than phenylephrine. Contrary, the selective α2-adrenoceptor agonist clonidine depressed basal levels of blood radioiodine. The non-selective α-adrenoceptor antagonist phentolamine and the selective α1-adrenoceptor antagonist prazosin both inhibited the noradrenaline-induced elevation of radioiodine levels, whereas the α2-adrenoceptor antagonist yohimbine had no such effect, except at a high dose level. All three α-adrenoceptor agonists, noradrenaline, phenylephrine and clonidine, inhibited the radioiodine response to TSH. In addition, TSH-induced increase in radioiodine levels was inhibited by prazosin, whereas yohimbine had no effect. Phentolamine inhibited the radioiodine response to TSH when given 2 h prior to TSH, whereas when given 15 min prior to TSH the response to TSH was potentiated by Phentolamine. It is concluded, that under in vivo conditions in the mouse, α1-adrenoceptor activation stimulates basal thyroid hormone secretion and inhibits TSH-induced thyroid hormone secretion. Further, α2-adrenoceptor activation inhibits basal thyroid hormone secretion. In addition, TSH-induced thyroid hormone secretion is inhibited by α1-adrenoceptor antagonism. Thus, α-adrenoceptors induce both stimulatory and inhibitory effects of thyroid function.


Sign in / Sign up

Export Citation Format

Share Document