scholarly journals Neuronal pannexin-1 channels are not molecular routes of water influx during spreading depolarization-induced dendritic beading

2016 ◽  
Vol 37 (5) ◽  
pp. 1626-1633 ◽  
Author(s):  
Jeremy Sword ◽  
Deborah Croom ◽  
Phil L Wang ◽  
Roger J Thompson ◽  
Sergei A Kirov

Spreading depolarization-induced focal dendritic swelling (beading) is an early hallmark of neuronal cytotoxic edema. Pyramidal neurons lack membrane-bound aquaporins posing a question of how water enters neurons during spreading depolarization. Recently, we have identified chloride-coupled transport mechanisms that can, at least in part, participate in dendritic beading. Yet transporter-mediated ion and water fluxes could be paralleled by water entry through additional pathways such as large-pore pannexin-1 channels opened by spreading depolarization. Using real-time in vivo two-photon imaging in mice with pharmacological inhibition or conditional genetic deletion of pannexin-1, we showed that pannexin-1 channels are not required for spreading depolarization-induced focal dendritic swelling.

2010 ◽  
Vol 299 (1) ◽  
pp. G255-G264 ◽  
Author(s):  
Elise S. Demitrack ◽  
Manoocher Soleimani ◽  
Marshall H. Montrose

Gastric surface pH (pHo) transiently increases in response to focal epithelial damage. The sources of that increase, either from paracellular leakage of interstitial fluid or transcellular acid/base fluxes, have not been determined. Using in vivo microscopy approaches we measured pHowith Cl-NERF, tissue permeability with intravenous fluorescent-dextrans to label interstitial fluid (paracellular leakage), and gastric epithelial intracellular pH (pHi) with SNARF-5F (cellular acid/base fluxes). In response to two-photon photodamage, we found that cell-impermeant dyes entered damaged cells from luminal or tissue compartments, suggesting a possible slow transcellular, but not paracellular, route for increased permeability after damage. Regarding cytosolic acid/base status, we found that damaged cells acidified (6.63 ± 0.03) after photodamage, compared with healthy surface cells both near (7.12 ± 0.06) and far (7.07 ± 0.04) from damage ( P < 0.05). This damaged cell acidification was further attenuated with 20 μM intravenous EIPA (6.34 ± 0.05, P < 0.05) but unchanged by addition of 0.5 mM luminal H2DIDS (6.64 ± 0.08, P > 0.05). Raising luminal pH did not realkalinize damaged cells, suggesting that the mechanism of acidification is not attributable to leakiness to luminal protons. Inhibition of apical HCO3−secretion with 0.5 mM luminal H2DIDS or genetic deletion of the solute-like carrier 26A9 (SLC26A9) Cl−/HCO3−exchanger blocked the pHoincrease normally observed in control animals but did not compromise repair of damaged tissue. Addition of exogenous PGE2significantly increased pHoin wild-type, but not SLC26A9 knockout, animals, suggesting that prostaglandin-stimulated HCO3−secretion is fully mediated by SLC26A9. We conclude that cellular HCO3−secretion, likely through SLC26A9, is the dominant mechanism whereby surface pH transiently increases in response to photodamage.


2021 ◽  
Author(s):  
William T Redman ◽  
Nora S Wolcott ◽  
Luca Montelisciani ◽  
Gabriel Luna ◽  
Tyler D Marks ◽  
...  

The hippocampus consists of a stereotyped neuronal circuit repeated along the septal-temporal axis. This transverse circuit contains distinct subfields with stereotyped connectivity that support crucial cognitive processes, including episodic and spatial memory. However, comprehensive measurements across the transverse hippocampal circuit in vivo are intractable with existing techniques. Here, we developed an approach for two-photon imaging of the transverse hippocampal plane in awake mice via implanted glass microperiscopes, allowing optical access to the major hippocampal subfields and to the dendritic arbor of pyramidal neurons. Using this approach, we tracked dendritic morphological dynamics on CA1 apical dendrites and characterized spine turnover. We then used calcium imaging to quantify the prevalence of place and speed cells across subfields. Finally, we measured the anatomical distribution of spatial information, finding a non-uniform distribution of spatial selectivity along the DG-to-CA1 axis. This approach extends the existing toolbox for structural and functional measurements of hippocampal circuitry.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hiromu Monai ◽  
Shinnosuke Koketsu ◽  
Yoshiaki Shinohara ◽  
Takatoshi Ueki ◽  
Peter Kusk ◽  
...  

AbstractCortical spreading depolarization (CSD) is a propagating wave of tissue depolarization characterized by a large increase of extracellular potassium concentration and prolonged subsequent electrical silencing of neurons. Waves of CSD arise spontaneously in various acute neurological settings, including migraine aura and ischemic stroke. Recently, we have reported that pan-inhibition of adrenergic receptors (AdRs) facilitates the normalization of extracellular potassium after acute photothrombotic stroke in mice. Here, we have extended that mechanistic study to ask whether AdR antagonists also modify the dynamics of KCl-induced CSD and post-CSD recovery in vivo. Spontaneous neural activity and KCl-induced CSD were visualized by cortex-wide transcranial Ca2+ imaging in G-CaMP7 transgenic mice. AdR antagonism decreased the recurrence of CSD waves and accelerated the post-CSD recovery of neural activity. Two-photon imaging revealed that astrocytes exhibited aberrant Ca2+ signaling after passage of the CSD wave. This astrocytic Ca2+ activity was diminished by the AdR antagonists. Furthermore, AdR pan-antagonism facilitated the normalization of the extracellular potassium level after CSD, which paralleled the recovery of neural activity. These observations add support to the proposal that neuroprotective effects of AdR pan-antagonism arise from accelerated normalization of extracellular K+ levels in the setting of acute brain injury.


2020 ◽  
Author(s):  
Congping Chen ◽  
Zhongya Qin ◽  
Sicong He ◽  
Shaojun Liu ◽  
Shun-Fat Lau ◽  
...  

AbstractImaging of the brain in its native state at high resolution poses major challenges to visualization techniques. Two-photon microscopy integrated with the thinned-skull or optical clearing skull technique provides a minimally invasive tool for in vivo imaging of the cortex of mice without activating immune response and inducing brain injury. However, the imaging contrast and resolution are severely compromised by the optical heterogeneity of the skull, limiting the imaging depth to the superficial layer. Here, we develop adaptive optics two-photon microscopy for high-resolution transcranial imaging of layer 5 pyramidal neurons up to 700 μm below pia in living mice. In particular, an optimized configuration of imaging system and new wavefront sensing algorithm are proposed for accurate correction for the aberrations induced by the skull window and brain tissue. We investigated microglia-plaque interaction in living brain of Alzheimer’s disease and demonstrated high-precision laser dendrotomy and single-spine ablation.


2017 ◽  
Vol 114 (41) ◽  
pp. E8770-E8779 ◽  
Author(s):  
Sebastian Sulis Sato ◽  
Pietro Artoni ◽  
Silvia Landi ◽  
Olga Cozzolino ◽  
Riccardo Parra ◽  
...  

2017 ◽  
Author(s):  
Weijian Yang ◽  
Luis Carrillo-Reid ◽  
Yuki Bando ◽  
Darcy S. Peterka ◽  
Rafael Yuste

We demonstrate a holographic system for simultaneous three-dimensional (3D) two-photon stimulation and imaging of neural activity in the mouse neocortex in vivo with cellular resolution. Dual two-photon excitation paths are implemented with independent 3D targeting for calcium imaging and precision optogenetics. We validate the usefulness of the microscope by photoactivating local pools of interneurons in awake mice visual cortex in 3D, which suppress the nearby pyramidal neurons’ response to visual stimuli.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Weijian Yang ◽  
Luis Carrillo-Reid ◽  
Yuki Bando ◽  
Darcy S Peterka ◽  
Rafael Yuste

The simultaneous imaging and manipulating of neural activity could enable the functional dissection of neural circuits. Here we have combined two-photon optogenetics with simultaneous volumetric two-photon calcium imaging to measure and manipulate neural activity in mouse neocortex in vivo in three-dimensions (3D) with cellular resolution. Using a hybrid holographic approach, we simultaneously photostimulate more than 80 neurons over 150 μm in depth in layer 2/3 of the mouse visual cortex, while simultaneously imaging the activity of the surrounding neurons. We validate the usefulness of the method by photoactivating in 3D selected groups of interneurons, suppressing the response of nearby pyramidal neurons to visual stimuli in awake animals. Our all-optical approach could be used as a general platform to read and write neuronal activity.


2009 ◽  
Vol 30 (4) ◽  
pp. 783-791 ◽  
Author(s):  
Craig E Brown ◽  
Jamie D Boyd ◽  
Timothy H Murphy

The manner in which fully mature peri-infarct cortical dendritic arbors remodel after stroke, and thus may possibly contribute to stroke-induced changes in cortical receptive fields, is unknown. In this study, we used longitudinal in vivo two-photon imaging to investigate the extent to which brain ischemia can trigger dendritic remodeling of pyramidal neurons in the adult mouse somatosensory cortex, and to determine the nature by which remodeling proceeds over time and space. Before the induction of stroke, dendritic arbors were relatively stable over several weeks. However, after stroke, apical dendritic arbor remodeling increased significantly (dendritic tip growth and retraction), particularly within the first 2 weeks after stroke. Despite a threefold increase in structural remodeling, the net length of arbors did not change significantly over time because dendrite extensions away from the stroke were balanced by the shortening of tips near the infarct. Therefore, fully mature cortical pyramidal neurons retain the capacity for extensive structural plasticity and remodel in a balanced and branch-specific manner.


2016 ◽  
Vol 54 (12) ◽  
pp. 1343-1404
Author(s):  
A Ghallab ◽  
R Reif ◽  
R Hassan ◽  
AS Seddek ◽  
JG Hengstler

Sign in / Sign up

Export Citation Format

Share Document