scholarly journals A role for sex and a common HFE gene variant in brain iron uptake

2017 ◽  
Vol 38 (3) ◽  
pp. 540-548 ◽  
Author(s):  
Kari A Duck ◽  
Elizabeth B Neely ◽  
Ian A Simpson ◽  
James R Connor

HFE (high iron) is an essential protein for regulating iron transport into cells. Mutations of the HFE gene result in loss of this regulation causing accumulation of iron within the cell. The mutated protein has been found increasingly in numerous neurodegenerative disorders in which increased levels of iron in the brain are reported. Additionally, evidence that these mutations are associated with elevated brain iron challenges the paradigm that the brain is protected by the blood–brain barrier. While much has been studied regarding the role of HFE in cellular iron uptake, it has remained unclear what role the protein plays in the transport of iron into the brain. We investigated regulation of iron transport into the brain using a mouse model with a mutation in the HFE gene. We demonstrated that the rate of radiolabeled iron (59Fe) uptake was similar between the two genotypes despite higher brain iron concentrations in the mutant. However, there were significant differences in iron uptake between males and females regardless of genotype. These data indicate that brain iron status is consistently maintained and tightly regulated at the level of the blood–brain barrier.

2018 ◽  
Vol 39 (11) ◽  
pp. 2117-2131 ◽  
Author(s):  
Brian Chiou ◽  
Emma H Neal ◽  
Aaron B Bowman ◽  
Ethan S Lippmann ◽  
Ian A Simpson ◽  
...  

Iron delivery to the brain is essential for multiple neurological processes such as myelination, neurotransmitter synthesis, and energy production. Loss of brain iron homeostasis is a significant factor in multiple neurological disorders. Understanding the mechanism by which the transport of iron across the blood–brain barrier (BBB) is regulated is crucial to address the impact of iron deficiency on brain development and excessive accumulation of iron in neurodegenerative diseases. Using induced pluripotent stem cell (iPSC)-derived brain endothelial cells (huECs) as a human BBB model, we demonstrate the ability of transferrin, hepcidin, and DMT1 to impact iron transport and release. Our model reveals a new function for H-ferritin to transport iron across the BBB by binding to the T-cell immunoglobulin and mucin receptor 1. We show that huECs secrete both transferrin and H-ferritin, which can serve as iron sources for the brain. Based on our data, brain iron status can exert control of iron transport across the endothelial cells that constitute the BBB. These data address a number of pertinent questions such as how brain iron uptake is regulated at the regional level, the source of iron delivery to the brain, and the clinical strategies for attempting to treat brain iron deficiency.


2018 ◽  
Vol 25 (9) ◽  
pp. 1073-1089 ◽  
Author(s):  
Santiago Vilar ◽  
Eduardo Sobarzo-Sanchez ◽  
Lourdes Santana ◽  
Eugenio Uriarte

Background: Blood-brain barrier transport is an important process to be considered in drug candidates. The blood-brain barrier protects the brain from toxicological agents and, therefore, also establishes a restrictive mechanism for the delivery of drugs into the brain. Although there are different and complex mechanisms implicated in drug transport, in this review we focused on the prediction of passive diffusion through the blood-brain barrier. Methods: We elaborated on ligand-based and structure-based models that have been described to predict the blood-brain barrier permeability. Results: Multiple 2D and 3D QSPR/QSAR models and integrative approaches have been published to establish quantitative and qualitative relationships with the blood-brain barrier permeability. We explained different types of descriptors that correlate with passive diffusion along with data analysis methods. Moreover, we discussed the applicability of other types of molecular structure-based simulations, such as molecular dynamics, and their implications in the prediction of passive diffusion. Challenges and limitations of experimental measurements of permeability and in silico predictive methods were also described. Conclusion: Improvements in the prediction of blood-brain barrier permeability from different types of in silico models are crucial to optimize the process of Central Nervous System drug discovery and development.


2020 ◽  
Vol 26 (37) ◽  
pp. 4721-4737 ◽  
Author(s):  
Bhumika Kumar ◽  
Mukesh Pandey ◽  
Faheem H. Pottoo ◽  
Faizana Fayaz ◽  
Anjali Sharma ◽  
...  

Parkinson’s disease is one of the most severe progressive neurodegenerative disorders, having a mortifying effect on the health of millions of people around the globe. The neural cells producing dopamine in the substantia nigra of the brain die out. This leads to symptoms like hypokinesia, rigidity, bradykinesia, and rest tremor. Parkinsonism cannot be cured, but the symptoms can be reduced with the intervention of medicinal drugs, surgical treatments, and physical therapies. Delivering drugs to the brain for treating Parkinson’s disease is very challenging. The blood-brain barrier acts as a highly selective semi-permeable barrier, which refrains the drug from reaching the brain. Conventional drug delivery systems used for Parkinson’s disease do not readily cross the blood barrier and further lead to several side-effects. Recent advancements in drug delivery technologies have facilitated drug delivery to the brain without flooding the bloodstream and by directly targeting the neurons. In the era of Nanotherapeutics, liposomes are an efficient drug delivery option for brain targeting. Liposomes facilitate the passage of drugs across the blood-brain barrier, enhances the efficacy of the drugs, and minimize the side effects related to it. The review aims at providing a broad updated view of the liposomes, which can be used for targeting Parkinson’s disease.


2020 ◽  
Vol 26 (13) ◽  
pp. 1448-1465 ◽  
Author(s):  
Jozef Hanes ◽  
Eva Dobakova ◽  
Petra Majerova

Tauopathies are neurodegenerative disorders characterized by the deposition of abnormal tau protein in the brain. The application of potentially effective therapeutics for their successful treatment is hampered by the presence of a naturally occurring brain protection layer called the blood-brain barrier (BBB). BBB represents one of the biggest challenges in the development of therapeutics for central nervous system (CNS) disorders, where sufficient BBB penetration is inevitable. BBB is a heavily restricting barrier regulating the movement of molecules, ions, and cells between the blood and the CNS to secure proper neuronal function and protect the CNS from dangerous substances and processes. Yet, these natural functions possessed by BBB represent a great hurdle for brain drug delivery. This review is concentrated on summarizing the available methods and approaches for effective therapeutics’ delivery through the BBB to treat neurodegenerative disorders with a focus on tauopathies. It describes the traditional approaches but also new nanotechnology strategies emerging with advanced medical techniques. Their limitations and benefits are discussed.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii17-ii17
Author(s):  
Katie Troike ◽  
Erin Mulkearns-Hubert ◽  
Daniel Silver ◽  
James Connor ◽  
Justin Lathia

Abstract Glioblastoma (GBM), the most common primary malignant brain tumor in adults, is characterized by invasive growth and poor prognosis. Iron is a critical regulator of many cellular processes, and GBM tumor cells have been shown to modulate expression of iron-associated proteins to enhance iron uptake from the surrounding microenvironment, driving tumor initiation and growth. While iron uptake has been the central focus of previous investigations, additional mechanisms of iron regulation, such as compensatory iron efflux, have not been explored in the context of GBM. The hemochromatosis (HFE) gene encodes a transmembrane glycoprotein that aids in iron homeostasis by limiting cellular iron release, resulting in a sequestration phenotype. We find that HFE is upregulated in GBM tumors compared to non-tumor brain and that expression of HFE increases with tumor grade. Furthermore, HFE mRNA expression is associated with significantly reduced survival specifically in female patients with GBM. Based on these findings, we hypothesize that GBM tumor cells upregulate HFE expression to augment cellular iron loading and drive proliferation, ultimately leading to reduced survival of female patients. To test this hypothesis, we generated Hfe knockdown and overexpressing mouse glioma cell lines. We observed significant alterations in the expression of several iron handling genes with Hfe knockdown or overexpression, suggesting global disruption of iron homeostasis. Additionally, we show that knockdown of Hfe in these cells increases apoptosis and leads to a significant impairment of tumor growth in vivo. These findings support the hypothesis that Hfe is a critical regulator of cellular iron status and contributes to tumor aggression. Future work will include further exploration of the mechanisms that contribute to these phenotypes as well as interactions with the tumor microenvironment. Elucidating the mechanisms by which iron effulx contributes to GBM may inform the development of next-generation targeted therapies.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 892
Author(s):  
Elisa L. J. Moya ◽  
Elodie Vandenhaute ◽  
Eleonora Rizzi ◽  
Marie-Christine Boucau ◽  
Johan Hachani ◽  
...  

Central nervous system (CNS) diseases are one of the top causes of death worldwide. As there is a difficulty of drug penetration into the brain due to the blood–brain barrier (BBB), many CNS drugs treatments fail in clinical trials. Hence, there is a need to develop effective CNS drugs following strategies for delivery to the brain by better selecting them as early as possible during the drug discovery process. The use of in vitro BBB models has proved useful to evaluate the impact of drugs/compounds toxicity, BBB permeation rates and molecular transport mechanisms within the brain cells in academic research and early-stage drug discovery. However, these studies that require biological material (animal brain or human cells) are time-consuming and involve costly amounts of materials and plastic wastes due to the format of the models. Hence, to adapt to the high yields needed in early-stage drug discoveries for compound screenings, a patented well-established human in vitro BBB model was miniaturized and automated into a 96-well format. This replicate met all the BBB model reliability criteria to get predictive results, allowing a significant reduction in biological materials, waste and a higher screening capacity for being extensively used during early-stage drug discovery studies.


Sci ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 16
Author(s):  
James David Adams

A three-part mechanism is proposed for the induction of Alzheimer’s disease: (1) decreased blood lactic acid; (2) increased blood ceramide and adipokines; (3) decreased blood folic acid. The age-related nature of these mechanisms comes from age-associated decreased muscle mass, increased visceral fat and changes in diet. This mechanism also explains why many people do not develop Alzheimer’s disease. Simple changes in lifestyle and diet can prevent Alzheimer’s disease. Alzheimer’s disease is caused by a cascade of events that culminates in damage to the blood–brain barrier and damage to neurons. The blood–brain barrier keeps toxic molecules out of the brain and retains essential molecules in the brain. Lactic acid is a nutrient to the brain and is produced by exercise. Damage to endothelial cells and pericytes by inadequate lactic acid leads to blood–brain barrier damage and brain damage. Inadequate folate intake and oxidative stress induced by activation of transient receptor potential cation channels and endothelial nitric oxide synthase damage the blood–brain barrier. NAD depletion due to inadequate intake of nicotinamide and alterations in the kynurenine pathway damages neurons. Changes in microRNA levels may be the terminal events that cause neuronal death leading to Alzheimer’s disease. A new mechanism of Alzheimer’s disease induction is presented involving lactic acid, ceramide, IL-1β, tumor necrosis factor α, folate, nicotinamide, kynurenine metabolites and microRNA.


2021 ◽  
Vol 22 (9) ◽  
pp. 4479
Author(s):  
Eleonora Ficiarà ◽  
Zunaira Munir ◽  
Silvia Boschi ◽  
Maria Eugenia Caligiuri ◽  
Caterina Guiot

Proper functioning of all organs, including the brain, requires iron. It is present in different forms in biological fluids, and alterations in its distribution can induce oxidative stress and neurodegeneration. However, the clinical parameters normally used for monitoring iron concentration in biological fluids (i.e., serum and cerebrospinal fluid) can hardly detect the quantity of circulating iron, while indirect measurements, e.g., magnetic resonance imaging, require further validation. This review summarizes the mechanisms involved in brain iron metabolism, homeostasis, and iron imbalance caused by alterations detectable by standard and non-standard indicators of iron status. These indicators for iron transport, storage, and metabolism can help to understand which biomarkers can better detect iron imbalances responsible for neurodegenerative diseases.


Biomolecules ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 909
Author(s):  
Yurii A. Zolotarev ◽  
Vladimir A. Mitkevich ◽  
Stanislav I. Shram ◽  
Alexei A. Adzhubei ◽  
Anna P. Tolstova ◽  
...  

One of the treatment strategies for Alzheimer’s disease (AD) is based on the use of pharmacological agents capable of binding to beta-amyloid (Aβ) and blocking its aggregation in the brain. Previously, we found that intravenous administration of the synthetic tetrapeptide Acetyl-His-Ala-Glu-Glu-Amide (HAEE), which is an analogue of the 35–38 region of the α4 subunit of α4β2 nicotinic acetylcholine receptor and specifically binds to the 11–14 site of Aβ, reduced the development of cerebral amyloidogenesis in a mouse model of AD. In the current study on three types of laboratory animals, we determined the biodistribution and tissue localization patterns of HAEE peptide after single intravenous bolus administration. The pharmacokinetic parameters of HAEE were established using uniformly tritium-labeled HAEE. Pharmacokinetic data provided evidence that HAEE goes through the blood–brain barrier. Based on molecular modeling, a role of LRP1 in receptor-mediated transcytosis of HAEE was proposed. Altogether, the results obtained indicate that the anti-amyloid effect of HAEE, previously found in a mouse model of AD, most likely occurs due to its interaction with Aβ species directly in the brain.


Sign in / Sign up

Export Citation Format

Share Document