Mechanism of Action of Progestins in the Treatment of Hormone-dependent Breast Cancer.

1975 ◽  
Vol 61 (6) ◽  
pp. 501-508 ◽  
Author(s):  
Francesco Di Carlo ◽  
Giovanni Pacilio ◽  
Giuseppe Conti

The in vitro interference of some gestagens with the binding of 3H-17 β-oestradiol to cytosol specific receptors was investigated with a view to elucidating the mechanism of action of progestins in the treatment of human hormone-dependent breast cancer. A decrease (up to 85 %) of oestradiol binding capacity was observed with high concentrations of progesterone, clogestone and medrogestone. These findings are in good agreement with those previously obtained by the same progestins in our laboratory on rat uterine estrogen receptors in vitro or in vivo. These results provide support for the hypothesis that the mode of action of progestins in the therapy of mammary and perhaps uterine carcinomas is to some extent related to the inhibition of oestradiol binding to cytosol specific receptors.

1978 ◽  
Vol 77 (1) ◽  
pp. 49-55 ◽  
Author(s):  
F. DI CARLO ◽  
G. CONTI ◽  
C. REBOANI

The inhibitory effect of some gestagens and calusterone on the binding of oestradiol-17β to its specific uterine receptors has been investigated in intact rats. Progesterone, medrogestone, clogestone, medroxyprogesterone acetate and calusterone reduce the specific oestradiol– receptor interaction in vitro; this effect is dose-dependent and does not differ significantly from one drug to the other. A more relevant decrease in the amount of oestradiol-17β bound to specific receptors has been observed with calusterone. Progesterone, clogestone, medrogestone, medroxyprogesterone acetate and calusterone given orally induce a marked decrease (between 30 and 70% depending on the dose) in the binding capacity of oestradiol-17β to specific uterine receptors in vivo. Results from a Scatchard plot analysis suggest that the interference with the binding of oestradiol-17β caused by both progestogens and calusterone is due to a non-competitive interaction.


2013 ◽  
Vol 16 (5) ◽  
pp. 742 ◽  
Author(s):  
Juliana De Almeida Pachioni ◽  
Juliana Gallottini Magalhães ◽  
Elys Juliane Cardoso Lima ◽  
Luciana De Moura Bueno ◽  
Joyce Ferreira Barbosa ◽  
...  

PURPOSE: Since when alkylphospholipds (ALPs) were discovered and, even further after miltefosine’s approval for the treatment of cutaneous metastasis of breast cancer and leishmaniasis, their activity against many other diseases have been extensively studied. This review aims to provide a summary of the alkylphospholipids’ applications investigated so far. RESULTS: The mechanism of action of ALPs is not fully understood, however it is believed that they interfere with lipid homeostasis leading to cell apoptosis. Due to ALPs cytotoxic activity, this class of molecules has shown to be effective against many diseases and conditions. Besides the approval of miltefosine for application in cutaneous metastasis of breast cancer and visceral and cutaneous leishmaniasis, several other analogs have proved efficacy and are promising as less toxic alternatives. ALPs have also shown in vitro and in vivo activity against Trypanosoma spp., amoebae, Tricomonas vaginalis, Schistosoma mansoni, HIV, and some fungi and bacteria species. The use of ALPs for intraocular lens coating is also under investigation. In addition, a clinical trial comparing miltefosine with usual treatments to spontaneous urticaria is also being conducted. CONCLUSIONS: Alkylphospholipids present such a broad pharmacological spectrum that justifies the need for further investigations of the drug class mechanisms of action, as well as the search for new analogs with improved activity and toxicological profiles.This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For Readers”) may comment by clicking on ABSTRACT on the issue’s contents page.


1999 ◽  
Vol 38 (04) ◽  
pp. 115-119
Author(s):  
N. Oriuchi ◽  
S. Sugiyama ◽  
M. Kuroki ◽  
Y. Matsuoka ◽  
S. Tanada ◽  
...  

Summary Aim: The purpose of this study was to assess the potential for radioimmunodetection (RAID) of murine anti-carcinoembryonic antigen (CEA) monoclonal antibody (MAb) F33-104 labeled with technetium-99m (99m-Tc) by a reduction-mediated labeling method. Methods: The binding capacity of 99m-Tc-labeled anti-CEA MAb F33-104 with CEA by means of in vitro procedures such as immunoradiometric assay and cell binding assay and the biodistribution of 99m-Tc-labeled anti-CEA MAb F33-104 in normal nude mice and nude mice bearing human colon adenocarcinoma LS180 tumor were investigated and compared with 99m-Tc-labeled anti-CEA MAb BW431/26. Results: The in vitro binding rate of 99m-Tc-labeled anti-CEA MAb F33-104 with CEA in solution and attached to the cell membrane was significantly higher than 99m-Tclabeled anti-CEA MAb BW431/261 (31.4 ± 0.95% vs. 11.9 ± 0.55% at 100 ng/mL of soluble CEA, 83.5 ± 2.84% vs. 54.0 ± 2.54% at 107 of LS 180 cells). In vivo, accumulation of 99m-Tc-labeled anti-CEA MAb F33-104 was higher at 18 h postinjection than 99m-Tc-labeled anti-CEA MAb BW431/26 (20.1 ± 3.50% ID/g vs. 14.4 ± 3.30% ID/g). 99m-Tcactivity in the kidneys of nude mice bearing tumor was higher at 18 h postinjection than at 3 h (12.8 ± 2.10% ID/g vs. 8.01 ± 2.40% ID/g of 99m-Tc-labeled anti-CEA MAb F33-104, 10.7 ± 1.70% ID/g vs. 8.10 ± 1.75% ID/g of 99m-Tc-labeled anti-CEA MAb BW431/26). Conclusion: 99m-Tc-labeled anti-CEA MAb F33-104 is a potential novel agent for RAID of recurrent colorectal cancer.


2019 ◽  
Vol 2 (4) ◽  
pp. 83-98 ◽  
Author(s):  
André De Lima Mota ◽  
Bruna Vitorasso Jardim-Perassi ◽  
Tialfi Bergamin De Castro ◽  
Jucimara Colombo ◽  
Nathália Martins Sonehara ◽  
...  

Breast cancer is the most common cancer among women and has a high mortality rate. Adverse conditions in the tumor microenvironment, such as hypoxia and acidosis, may exert selective pressure on the tumor, selecting subpopulations of tumor cells with advantages for survival in this environment. In this context, therapeutic agents that can modify these conditions, and consequently the intratumoral heterogeneity need to be explored. Melatonin, in addition to its physiological effects, exhibits important anti-tumor actions which may associate with modification of hypoxia and Warburg effect. In this study, we have evaluated the action of melatonin on tumor growth and tumor metabolism by different markers of hypoxia and glucose metabolism (HIF-1α, glucose transporters GLUT1 and GLUT3 and carbonic anhydrases CA-IX and CA-XII) in triple negative breast cancer model. In an in vitro study, gene and protein expressions of these markers were evaluated by quantitative real-time PCR and immunocytochemistry, respectively. The effects of melatonin were also tested in a MDA-MB-231 xenograft animal model. Results showed that melatonin treatment reduced the viability of MDA-MB-231 cells and tumor growth in Balb/c nude mice (p <0.05). The treatment significantly decreased HIF-1α gene and protein expression concomitantly with the expression of GLUT1, GLUT3, CA-IX and CA-XII (p <0.05). These results strongly suggest that melatonin down-regulates HIF-1α expression and regulates glucose metabolism in breast tumor cells, therefore, controlling hypoxia and tumor progression. 


2014 ◽  
Author(s):  
Raul M Luque ◽  
Mario Duran-Prado ◽  
David Rincon-Fernandez ◽  
Marta Hergueta-Redondo ◽  
Michael D Culler ◽  
...  

2018 ◽  
Vol 18 (17) ◽  
pp. 1483-1493
Author(s):  
Ricardo Imbroisi Filho ◽  
Daniel T.G. Gonzaga ◽  
Thainá M. Demaria ◽  
João G.B. Leandro ◽  
Dora C.S. Costa ◽  
...  

Background: Cancer is a major cause of death worldwide, despite many different drugs available to treat the disease. This high mortality rate is largely due to the complexity of the disease, which results from several genetic and epigenetic changes. Therefore, researchers are constantly searching for novel drugs that can target different and multiple aspects of cancer. Experimental: After a screening, we selected one novel molecule, out of ninety-four triazole derivatives, that strongly affects the viability and proliferation of the human breast cancer cell line MCF-7, with minimal effects on non-cancer cells. The drug, named DAN94, induced a dose-dependent decrease in MCF-7 cells viability, with an IC50 of 3.2 ± 0.2 µM. Additionally, DAN94 interfered with mitochondria metabolism promoting reactive oxygen species production, triggering apoptosis and arresting the cancer cells on G1/G0 phase of cell cycle, inhibiting cell proliferation. These effects are not observed when the drug was tested in the non-cancer cell line MCF10A. Using a mouse model with xenograft tumor implants, the drug preventing tumor growth presented no toxicity for the animal and without altering biochemical markers of hepatic function. Results and Conclusion: The novel drug DAN94 is selective for cancer cells, targeting the mitochondrial metabolism, which culminates in the cancer cell death. In the end, DAN94 has been shown to be a promising drug for controlling breast cancer with minimal undesirable effects.


2019 ◽  
Vol 1 (Supplement_1) ◽  
pp. i7-i7
Author(s):  
Jiaojiao Deng ◽  
Sophia Chernikova ◽  
Wolf-Nicolas Fischer ◽  
Kerry Koller ◽  
Bernd Jandeleit ◽  
...  

Abstract Leptomeningeal metastasis (LM), a spread of cancer to the cerebrospinal fluid and meninges, is universally and rapidly fatal due to poor detection and no effective treatment. Breast cancers account for a majority of LMs from solid tumors, with triple-negative breast cancers (TNBCs) having the highest propensity to metastasize to LM. The treatment of LM is challenged by poor drug penetration into CNS and high neurotoxicity. Therefore, there is an urgent need for new modalities and targeted therapies able to overcome the limitations of current treatment options. Quadriga has discovered a novel, brain-permeant chemotherapeutic agent that is currently in development as a potential treatment for glioblastoma (GBM). The compound is active in suppressing the growth of GBM tumor cell lines implanted into the brain. Radiolabel distribution studies have shown significant tumor accumulation in intracranial brain tumors while sparing the adjacent normal brain tissue. Recently, we have demonstrated dose-dependent in vitro and in vivo anti-tumor activity with various breast cancer cell lines including the human TNBC cell line MDA-MB-231. To evaluate the in vivo antitumor activity of the compound on LM, we used the mouse model of LM based on the internal carotid injection of luciferase-expressing MDA-MB-231-BR3 cells. Once the bioluminescence signal intensity from the metastatic spread reached (0.2 - 0.5) x 106 photons/sec, mice were dosed i.p. twice a week with either 4 or 8 mg/kg for nine weeks. Tumor growth was monitored by bioluminescence. The compound was well tolerated and caused a significant delay in metastatic growth resulting in significant extension of survival. Tumors regressed completely in ~ 28 % of treated animals. Given that current treatments for LM are palliative with only few studies reporting a survival benefit, Quadriga’s new agent could be effective as a therapeutic for both primary and metastatic brain tumors such as LM. REF: https://onlinelibrary.wiley.com/doi/full/10.1002/pro6.43


2020 ◽  
Vol 318 (1) ◽  
pp. G1-G9 ◽  
Author(s):  
Richard A. Jacobson ◽  
Kiedo Wienholts ◽  
Ashley J. Williamson ◽  
Sara Gaines ◽  
Sanjiv Hyoju ◽  
...  

Perforations, anastomotic leak, and subsequent intra-abdominal sepsis are among the most common and feared complications of invasive interventions in the colon and remaining intestinal tract. During physiological healing, tissue protease activity is finely orchestrated to maintain the strength and integrity of the submucosa collagen layer in the wound. We (Shogan, BD et al. Sci Trans Med 7: 286ra68, 2015.) have previously demonstrated in both mice and humans that the commensal microbe Enterococcus faecalis selectively colonizes wounded colonic tissues and disrupts the healing process by amplifying collagenolytic matrix-metalloprotease activity toward excessive degradation. Here, we demonstrate for the first time, to our knowledge, a novel collagenolytic virulence mechanism by which E. faecalis is able to bind and locally activate the human fibrinolytic protease plasminogen (PLG), a protein present in high concentrations in healing colonic tissue. E. faecalis-mediated PLG activation leads to supraphysiological collagen degradation; in this study, we demonstrate this concept both in vitro and in vivo. This pathoadaptive response can be mitigated with the PLG inhibitor tranexamic acid (TXA) in a fashion that prevents clinically significant complications in validated murine models of both E. faecalis- and Pseudomonas aeruginosa-mediated colonic perforation. TXA has a proven clinical safety record and is Food and Drug Administration approved for topical application in invasive procedures, albeit for the prevention of bleeding rather than infection. As such, the novel pharmacological effect described in this study may be translatable to clinical trials for the prevention of infectious complications in colonic healing. NEW & NOTEWORTHY This paper presents a novel mechanism for virulence in a commensal gut microbe that exploits the human fibrinolytic system and its principle protease, plasminogen. This mechanism is targetable by safe and effective nonantibiotic small molecules for the prevention of infectious complications in the healing gut.


Sign in / Sign up

Export Citation Format

Share Document