Binary Blends of Ethylene-α-olefin Elastomers for Improving the Balance between the Impact Strength and Individual Deformation and Strength Properties of Polypropylene Composites Produced by Reactive Extrusion

2017 ◽  
Vol 44 (10) ◽  
pp. 1-6 ◽  
Author(s):  
Yu.M. Kazakov ◽  
A.M. Volkov ◽  
I.G. Ryzhikova ◽  
N.A. Bauman ◽  
S.I. Vol'fson

The authors established and studied the synergistic effect of an increase in the impact strength and in individual physicomechanical characteristics of an elasticised polypropylene (PP) composite by using a binary combination of ethylene-α-olefin elastomers with contrasting Mooney viscosity values during reactive melt modification by the action of an organic peroxide and a coagent – trimethylolpropane triacrylate (TMPTA).

2017 ◽  
Vol 44 (6) ◽  
pp. 21-26 ◽  
Author(s):  
Yu.M. Kazakov ◽  
A.M. Volkov ◽  
I.G. Ryzhikova ◽  
S.I. Vol'fson

In order to improve the balance of flow, impact strength, and physicomechanical properties of polypropylene/nitrile butadiene rubber composites of structural designation, we investigated the possibility of using two complementary approaches in the process of manufacturing the composites. Firstly, this involves the introduction into the composition of these composites of special polymeric compatibilisers based on maleinised polypropylene with additions of elastomers of different nature. Secondly, it involves the use of the method of dynamic vulcanisation in the process of reactive extrusion of a PP/BNKS-18AMN blend with a peroxide modifying system including as a coagent a complex of polar vinyl monomer (maleic acid polyester and ethylene glycol) with aramine industrial antioxidant Diafen FP. Determination of the principal physicomechanical characteristics of the composites revealed that only the combined use of these two methods of modification makes it possible to achieve a significant shift in the level of impact strength of PP/NBR composites without adversely affecting other indices, with control of the flow of the end products. Here, the most effective compatibilisers were maleinised blends of polypropylene with non-polar elastomers: ethylene–octene copolymer (Engage 8842) and ternary ethylenepropylene rubber (Royalene 563). It is assumed that a probable cause of the improvement in properties of the polymer blends is the considerable increase in the degree of dispersion of the rubber phase of the NBR in the polypropylene matrix under the action of the modification processes described above.


2020 ◽  
Vol 1012 ◽  
pp. 67-72
Author(s):  
Lisete Cristine Scienza ◽  
Amanda Vecilla Chefer de Araújo ◽  
Hariel Marçal Kops Hubert ◽  
Luis Henrique Alves Cândido ◽  
Vinícius Martins ◽  
...  

Primary polymer recycling involves the reprocessing of defective parts and scraps in a processing line. The critical limitation for excessive use of primary recycling consists of the need to maintain the properties of the polymer above the required minimum level. The polymer degradation during the extrusion occurs by the combination thermal, oxidative and mechanical degradation. This work investigated the degradation of HDPE (High Density Polyethylene). Green HDPE (PV) and petrochemical HDPE (PN) were processed five times in a single-screw extruder and the flow rate, crystallinity and impact strength properties were evaluated. The increase in the number of reprocessing cycles increased the flow index and crystallinity values. The increase in the degree of crystallinity of the polymer, verified by the DSC analysis, evidenced the degradation of the material associated to the decrease of the size of the main chain (chain scission mechanism). The impact strength showed no significant change after five reprocessing cycles. Contrary variations were found in the crystallinity index considering the first and fifth processing, suggesting a change in the predominant mechanism of degradation.


2002 ◽  
Vol 10 (4) ◽  
pp. 299-306 ◽  
Author(s):  
Xiaodong Zhou ◽  
Qunfang Lin ◽  
Gance Dai

The mechanical properties of discontinuous glass fiber/continuous glass fiber mat/polypropylene composites were investigated. The mechanical properties increased with increasing areal weight of the continuous glass mat, whereas the suitable content of discontinuous fiber was also depended on the mat areal weight. The impact strength of composites initially decreased due to the addition of discontinuous glass fiber, but increased when the content of discontinuous glass fiber further increased. Comparisons between the 4 mm discontinuous fiber length and the 12 mm fiber showed that the longer discontinuous glass fiber was advantageous to the mechanical properties of composite system. The modification of the interfacial adhesion between reinforcements and matrix resin by using functionalized polypropylene played a significant role in improving the mechanical properties of the composites. But the impact strength decreased above 5% of MA-g-PP level (with respect to matrix resin). It was also found that using a matrix resin with a high melt index was beneficial impregnation with the mechanical properties improving accordingly.


Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1079 ◽  
Author(s):  
David Hernández-Díaz ◽  
Ricardo Villar-Ribera ◽  
Francesc X. Espinach ◽  
Fernando Julián ◽  
Vicente Hernández-Abad ◽  
...  

Natural fiber-reinforced thermoplastic composites can be an alternative to mineral fiber-based composites, especially when economic and environment concerns are included under the material selection criteria. In recent years, the literature has shown how lignocellulosic fiber-reinforced composites can be used for a variety of applications. Nonetheless, the impact strength and the water uptake behavior of such materials have been seen as drawbacks. In this work, the impact strength and the water uptake of composites made of polypropylene reinforced with fibers from recycled newspaper have been researched. The results show how the impact strength decreases with the percentage of reinforcement in a similar manner to that of glass fiber-reinforced polypropylene composites as a result of adding a fragile phase to the material. It was found that the water uptake increased with the increasing percentages of lignocellulosic fibers due to the hydrophilic nature of such reinforcements. The diffusion behavior was found to be Fickian. A maleic anhydride was added as a coupling agent in order to increase the strength of the interface between the matrix and the reinforcements. It was found that the presence of such a coupling agent increased the impact strength of the composites and decreased the water uptake. Impact strengths of 21.3 kJ/m3 were obtained for a coupled composite with 30 wt % reinforcement contents, which is a value higher than that obtained for glass fiber-based materials. The obtained composites reinforced with recycled fibers showed competitive impact strength and water uptake behaviors in comparison with materials reinforced with raw lignocellulosic fibers. The article increases the knowledge on newspaper fiber-reinforced polyolefin composite properties, showing the competitiveness of waste-based materials.


2005 ◽  
Vol 13 (4) ◽  
pp. 403-413
Author(s):  
Shanhua Zhou ◽  
Zhiyu Xu ◽  
Xin Liu ◽  
Yan Gao ◽  
Qingzhi Dong

A new interfacial modifier made of tetradecyl methylacrylate-maleic anhydride copolymer (TMA- co-MAH) was prepared and characterized. The effect of reaction time and monomer ratio on the gross conversion and MAH content in the copolymer was studied. When the glass mat was treated with TMA- co-MAH solutions and compounded with PP, the MAH group of the interfacial modifier formed strong interactions with the glass mat and the long side chain of the interfacial modifier entangled firmly with the polypropylene matrix. In comparison with maleated polyolefins, the higher MAH content of the TMA- co-MAH resulted in better interfacial adhesion between the PP and the glass mat resulting in increased flexural strength and modulus, and the ductility of the TMA- co-MAH introduced a ductile interlayer into the interface of the glass mat reinforced polypropylene composites (GMT-PPs) to achieve higher impact strength. Therefore the mechanical properties of composites treated with TMA- co-MAH were all superior to those of GMT-PPs treated with maleic anhydride grafted polypropylene (PP- g-MAH) solutions when they were used at the same level. The effects of anhydride content, concentration of copolymer and compounding time on the mechanical property of GMT-PPs were investigated. With the optimal monomer ratio, MAH:TMA = 7:3, a 3% copolymer solution and a compounding time of 5 min, the impact strength, flexural strength and modulus of GMT-PPs treated with the new interfacial modifier were all improved significantly compared with composites treated with 0.3% PP- g-MAH solution.


2011 ◽  
Vol 250-253 ◽  
pp. 839-842
Author(s):  
Chun He Yu ◽  
Shao Rong Lu ◽  
Zhi You Yang ◽  
Kuo Liu ◽  
Xin Fan

In order to enhance the interfacial interactions between the sisal fiber (SF) and the polypropylene (PP) matrix, a water-solubility hyperdispersant which has amphipathic structure and flexible segment was used. Experimental results revealed that when the content of hyperdispersant is 5 percent, the impact strength of the composites was 27.4 kJ·m-2 and the flexural strength of SF/PP composites was 40.1 MPa, which was 64 and 34 wt% higher than that of unmodified systems, respectively. Meanwhile, the crystallinity of the composites also leads to an increase.


2019 ◽  
Vol 17 (41) ◽  
pp. 40-50
Author(s):  
Zaynab N. Rasheed

Poly methyl methacrylate PMMA polymer could be considered the main material that used mostly in the recent years in denture base fabrication. It commonly known by it is poor strength properties such as low impact strength. The aim of the present research was to enhance the performance of PMMA denture base through the addition of two kind of nanoparticles (nano particles that selected from artificial and natural sources). Nano -particles from both Al2O3 and crushed peanut Peel were used for comparing purposes.Various weight fraction used in this study for both kinds of the additive (1%, 2% and 3%). Moreover, in this work a study and evaluation in impact strength (I.S.) value were done before and after immersion. The new prepared nanocomposite in three different liquids (mineral water, natural lemon juice and Pepsi) immersed during three specific time (10, 20 and 30 min), all tests completed at room temperature. It was found that the impact strength value before immersion decreased gradually during reinforcement with both type of nanoparticles except when using 3% of Peanuts Peel nanoparticles. Also, it was found after immersion pure PMMA in the three different liquid that the value of I.S. decreased. When immersion the prepared sample inside mineral water, it was noted that using Al2O3 as reinforcement the determined value decrease with increasing the weight fraction different from the Peanuts Peel. The obtained results showed that immersion these samples in naturel lemon juice increased the value of impact strength gradually with the time. I.S. value decreased while immersion nanocomposite of Al2O3 with Pepsi, while an obvious increase was clear with nanocomposite of Peanuts Peel with the immersion time.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Gebre Fenta Aynalem ◽  
Belete Sirahbizu

This study has endeavored to develop an Al2O3-filled natural fiber reinforced polymer composite which is intended to substitute the most widely used synthetic E-glass fiber material. To attain the desired objective of the work, 0, 5, 10, and 15 wt% Al2O3-filled chopped flax/unsaturated polyester resin composite have been developed by the conventional hand-lay-up method followed by a compression molding process. Consequently, characterization and mechanical property tests are conducted based on the ASTM standard. The results revealed that both tensile and impact strength properties of the base chopped flax/unsaturated polyester resin composite are all affected due to the inclusion and variation of the content of Al2O3 in 15 and 25 wt% fiber loading cases. It has been noticed that a 39.06% increase in the ultimate tensile strength of the composite in 25/UPR-5 composition has been gained. The effect of Al2O3 on the impact strength of the base composite has also been analyzed and a 45% increase has been observed in 15/UPR-10 composition. The findings also witnessed that the newly developed composite can be applied to make automotive parts such as mud guard and engine undercover.


Author(s):  
Murat Gökçe ◽  

The paper aims to design a concrete against repetitive impact and abrasion resistance. Macro/micro steel fibers and two types of crushed stone based on limestone and corundum as aggregate were used in concrete mixtures. Impact test device has been modified, designed and used for impact strength testing of concrete. The usability of the plate creep test in determining the impact strength of concrete was also investigated. According to the test results, a high correlation was found between the abrasion, impact resistance tests and the creep test.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Yaowalak Srisuwan ◽  
Yodthong Baimark ◽  
Supakij Suttiruengwong

A poly(ε-caprolactone-co-L-lactide) copolyester was synthesized and employed to toughen poly(L-lactide) (PLLA) by reactive melt blending in the presence of an epoxy-based chain extender. The effects of chain extension reaction and copolyester content on properties of PLLA-based blends were studied. The chain extension reaction reduced crystallinity and melt flow index of PLLA/copolyester blends. Meanwhile the copolyester blending improved the crystallinities of the chain-extended PLLA up to 20 wt% copolyester. The phase compatibility between PLLA matrix and dispersed copolyester phases was enhanced by the chain extension reaction. The impact strength of chain-extended PLLA increased with the contents of copolyester and chain extender.


Sign in / Sign up

Export Citation Format

Share Document