Comparative study of multiple heat indices in revisiting summer heat across China based on meteorological observations

Author(s):  
Yao Feng ◽  
Hong Wang ◽  
Wenbin Liu ◽  
Fubao Sun ◽  
Huijuan Cui

Multiple indices have been created to measure hot conditions that may cause discomfort, stress even death to humans. However, distinctions among these indices and their performance in measuring heat remain undisclosed. We conduct a comparative study of multiple heat indices and revisit the spatiotemporal changes in summer heat across China. The maximum temperature-based index, more sensitive to average and maximum temperatures, suggests a larger increasing trend (0.42°C/10a) in heat intensity than those average temperature-based ones which are more sensitive to minimum temperature. The absolute threshold-based heat-day indices are not so applicable as the relative ones in measuring the increasing heat days over the Tibetan Plateau. During 1960–2018, significant ( p < 0.05) increasing trends in heat intensity (0.11–0.42°C/10a) and heat day (0.63–2.67 days/10a) are revealed with a jump-like increase after the mid-1990s at the country level. Stronger heat intensity occurs over the southeast and north China with larger increasing trends over the Tibetan Plateau and northwest China. Northern China with larger increasing heat intensity and days should take effective measures of adaptation to reduce suffering from the summer heat. Given differences among multiple indices and the performance over different regions, a rational selection of heat index considering the research subject of interest and regional climatology is highly recommended.

2008 ◽  
Vol 8 (3) ◽  
pp. 8431-8453 ◽  
Author(s):  
Y. Wang ◽  
J. Xin ◽  
Z. Li ◽  
S. Wang ◽  
P. Wang ◽  
...  

Abstract. The seasonal variations in background aerosol optical depth (AOD) and aerosol type are investigated over various ecosystems in China based upon three years' worth of meteorological data and data collected by the Chinese Sun Hazemeter Network. In most parts of China, AODs are at a maximum in spring or summer and at a minimum in autumn or winter. Minimum values (0.10~0.20) of annual mean AOD at 500 nm are found in the Qinghai-Tibetan Plateau, which is located in the remote northeast corner of China, the northern forest ecosystems and Hainan Island. Annual mean AOD ranges from 0.25 to 0.30 over desert and oasis areas as well as the desertification grasslands in northern China; the annual mean AOD over the Loess Plateau is moderately high at 0.36. Regions where the highest density of agricultural and industrial activities are located and where anthropogenic sulphate aerosol and soil aerosol emissions are consistently high throughout the whole year (e.g. the central-eastern, southern and eastern coastal regions of China) experience annual mean AODs ranging from 0.50~0.80. Remarkable seasonal changes in the main types of aerosol over northern China (characterized by the Angstrom exponent, α) are seen. Due to biomass and fossil fuel burning from extensive agricultural practices in northern rural areas, concentrations of smoke and soot aerosols rise dramatically during autumn and winter (high α), while the main types of aerosol during spring and summer are dust and soil aerosols (low α). Over southeast Asia, biomass burning during the spring leads to increases in smoke and soot emissions. Over the Tibetan Plateau and Hainan Island where the atmosphere is pristine, the main types of aerosol are dust and sea salt, respectively.


2021 ◽  
pp. 1-50
Author(s):  
Xiaoquan Chen ◽  
Fengcun Xing ◽  
Shu Jiang ◽  
Yongchao Lu ◽  
Zhongrong Liu ◽  
...  

Using fresh cores samples, we determined the origin and formation process of Eocene lacustrine dolomites in the Tibetan Plateau through petrological, mineralogical, and geochemical analyses. Dolomitic rocks were collected from the upper member of Eocene Niubao Formation in the Lunpola Basin, and consist of dolomitic mudstone, argillaceous dolomite, dolomite-bearing mudstone and mud-bearing dolomite. These dolomites are dominated by aphanotopic and micro-crystalline dolomites, with minor amounts of euhedral or subhedral powder- and fine-crystalline dolomites. Carbon and oxygen stable isotopes, combined with ubiquitous gypsum in study area, indicates a semi-saline continental lake under strong evaporative conditions. The revealed relatively high temperature of dolomitization(33.8°C–119.1°C), combined with hydrothermal minerals such as cerous phosphate and barite, reflect the participation of dolomite from hot fluids. Moreover, the inferred dolomitization temperatures decrease gradually toward the centre of the lake basin, suggesting the resurgence of hydrothermal fluids along a fault zone on the lake margin. This proves that frequent thermal events occurred at the boundary fault of the Lunpola Basin margin during early Himalayan orogenesis. In addition, Jurassic carbonates interacting with hydrothermal fluids, as well as strong evaporation conditions, likely provided favourable conditions for the formation of primary lime sediments. A rich source of Mg2+ brought by volcanic ash, hydrothermal fluids, and the Jurassic carbonates then created conditions for dolomitization during the depositional period. Strong evaporation under a relatively hot climate enhanced penecontemporaneous dolomitization, thus forming dolomite. Tibetan Plateau was under arid to semi-arid climate conditions, and there was a widespread distribution of dolostones in western, central, and northern China during the Eocene period. The hydrothermal dolomites of the upper Niubao Formation testify for active hot springs, while lacustrine dolomite imply arid or semi-arid climates during the Eocene, in the early stages of Himalayan orogenesis.


Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1453 ◽  
Author(s):  
Junnan Xiong ◽  
Zhiwei Yong ◽  
Zegen Wang ◽  
Weiming Cheng ◽  
Yi Li ◽  
...  

The Tibetan Plateau is one of the most vulnerable areas to extreme precipitation. In recent decades, water cycles have accelerated, and the temporal and spatial characteristics of extreme precipitation have undergone dramatic changes across the Tibetan Plateau, especially in its various ecosystems. However, there are few studies that considered the variation of extreme precipitation in various ecosystems, and the impact of El Niño-Southern Oscillation (ENSO), and few researchers have made a quantitative analysis between them. In this study, we analyzed the spatial and temporal pattern of 10 extreme precipitation indices across the Tibetan Plateau (including its four main ecosystems: Forest, alpine meadow, alpine steppe, and desert steppe) based on daily precipitation from 76 meteorological stations over the past 30 years. We used the linear least squares method and Pearson correlation coefficient to examine variation magnitudes of 10 extreme precipitation indices and correlation. Temporal pattern indicated that consecutive wet days (CWD) had a slightly decreasing trend (slope = −0.006), consecutive dry days (CDD), simple daily intensity (SDII), and extreme wet day precipitation (R99) displayed significant increasing trends, while the trends of other indices were not significant. For spatial patterns, the increasing trends of nine extreme precipitation indices (excluding CDD) occurred in the southwestern, middle and northern regions of the Tibetan Plateau; decreasing trends were distributed in the southeastern region, while the spatial pattern of CDD showed the opposite distribution. As to the four different ecosystems, the number of moderate precipitation days (R10mm), number of heavy precipitation days (R20mm), wet day precipitation (PRCPTOT), and very wet day precipitation (R95) in forest ecosystems showed decreasing trends, but CDD exhibited a significant increasing trend (slope = 0.625, P < 0.05). In the other three ecosystems, all extreme precipitation indices generally exhibited increasing trends, except for CWD in alpine meadow (slope = −0.001) and desert steppe (slope = −0.005). Furthermore, the crossover wavelet transform indicated that the ENSO had a 4-year resonance cycle with R95, SDII, R20mm, and CWD. These results provided additional evidence that ENSO play an important remote driver for extreme precipitation variation in the Tibetan Plateau.


2015 ◽  
Vol 112 (30) ◽  
pp. 9299-9304 ◽  
Author(s):  
Miaogen Shen ◽  
Shilong Piao ◽  
Su-Jong Jeong ◽  
Liming Zhou ◽  
Zhenzhong Zeng ◽  
...  

In the Arctic, climate warming enhances vegetation activity by extending the length of the growing season and intensifying maximum rates of productivity. In turn, increased vegetation productivity reduces albedo, which causes a positive feedback on temperature. Over the Tibetan Plateau (TP), regional vegetation greening has also been observed in response to recent warming. Here, we show that in contrast to arctic regions, increased growing season vegetation activity over the TP may have attenuated surface warming. This negative feedback on growing season vegetation temperature is attributed to enhanced evapotranspiration (ET). The extra energy available at the surface, which results from lower albedo, is efficiently dissipated by evaporative cooling. The net effect is a decrease in daily maximum temperature and the diurnal temperature range, which is supported by statistical analyses of in situ observations and by decomposition of the surface energy budget. A daytime cooling effect from increased vegetation activity is also modeled from a set of regional weather research and forecasting (WRF) mesoscale model simulations, but with a magnitude smaller than observed, likely because the WRF model simulates a weaker ET enhancement. Our results suggest that actions to restore native grasslands in degraded areas, roughly one-third of the plateau, will both facilitate a sustainable ecological development in this region and have local climate cobenefits. More accurate simulations of the biophysical coupling between the land surface and the atmosphere are needed to help understand regional climate change over the TP, and possible larger scale feedbacks between climate in the TP and the Asian monsoon system.


2014 ◽  
Vol 81 (3) ◽  
pp. 520-530 ◽  
Author(s):  
Xiaoxin Yang ◽  
Tandong Yao ◽  
Daniel Joswiak ◽  
Ping Yao

AbstractTemperature signals in ice-core δ18O on the Tibetan Plateau (TP), particularly in the central and southern parts, continue to be debated because of the large scale of atmospheric circulation. This study presents ten ice-core δ18O records at an annual resolution, with four (Malan, Muztagata, Guliya, and Dunde) in the northern, three (Puruogangri, Geladaindong, Tanggula) in the central and three (Noijin Kangsang, Dasuopu, East Rongbuk) in the southern TP. Integration shows commonly increasing trends in δ18O in the past century, featuring the largest one in the northern, a moderate one in the central and the smallest one in the southern TP, which are all consistent with ground-based measurements of temperature. The influence of atmospheric circulation on isotopic signals in the past century was discussed through the analysis of El Niño/Southern Oscillation (ENSO), and of possible connections between sea surface temperature (SST) and the different increasing trends in both ice-core δ18O and temperature. Particularly, El Niño and the corresponding warm Bay of Bengal (BOB) SST enhance the TP ice-core isotopic enrichment, while La Niña, or corresponding cold BOB SST, causes depletion. This thus suggests a potential for reconstructing the ENSO history from the TP ice-core δ18O.


2021 ◽  
Vol 9 ◽  
Author(s):  
Zhibiao Wang ◽  
Renguang Wu ◽  
Zhang Chen ◽  
Lihua Zhu ◽  
Kai Yang ◽  
...  

In recent years, some studies emphasized the influence of western Tibetan Plateau summer snow on the East Asian summer precipitation. With the temperature rise in the past decades, the snow cover over the western Tibetan Plateau in summer has significantly decreased. This raises the question whether the impact of the Tibetan Plateau snow has changed. The present study identifies a prominent change in the influence of the western Tibetan Plateau snow cover on the East Asian summer precipitation. Before the early 2000’s, positive precipitation anomalies extend from the southeastern Tibetan Plateau through the Yangtze River to Japan and Korea and negative anomalies cover southeast China corresponding to more Tibetan Plateau snow cover. After the early 2000’s, with the reduction of snow cover variability, below-normal and above-normal summer precipitation occurs over northern China-Mongolia and northeast Asia, respectively, corresponding to more Tibetan Plateau snow cover. The change in the influence of the Tibetan Plateau snow on the East Asian summer precipitation is associated with an obvious change in the atmospheric circulation anomaly pattern. Before the early 2000’s, the wind anomalies display a south-north contrast pattern with anomalous convergence along the Yangtze River. After the early 2000’s, an anomalous cyclone occupies Northeast China with anomalous southerlies and northerlies over northeast Asia and northern China, respectively. The Tibetan Plateau snow cover variation after the early 2000’s is associated with the northeast Indian summer precipitation. The model experiments confirm that the weakened influence of summer western Tibetan Plateau snow cover on the East Asian atmospheric circulation and precipitation with the reduced snow cover anomalies.


2020 ◽  
Vol 17 (4) ◽  
Author(s):  
Qiangqiang Jia ◽  
Shoude Zhang ◽  
Hongyang Zhang ◽  
Xijuan Yang ◽  
Xinli Cui ◽  
...  

2013 ◽  
Vol 26 (24) ◽  
pp. 10125-10138 ◽  
Author(s):  
Xiuhua Zhu ◽  
Weiqiang Wang ◽  
Klaus Fraedrich

Abstract The authors use a statistical regional climate model [Statistical Regional Model (STAR)] to project the Tibetan Plateau (TP) climate for the period 2015–50. Reanalysis datasets covering 1958–2001 are used as a substitute of observations and resampled by STAR to optimally fit prescribed linear temperature trends derived from the Max Planck Institute Earth System Model (MPI-ESM) simulations for phase 5 of the Coupled Model Intercomparison Project (CMIP5) under the representative concentration pathway 2.6 (RCP2.6) and RCP4.5 scenarios. To assess the related uncertainty, temperature trends from carefully selected best/worst ensemble members are considered. In addition, an extra projection is forced by observed temperature trends in 1958–2001. The following results are obtained: (i) Spatial average temperature will increase by 0.6°–0.9°C; the increase exceeds 1°C in all months except in boreal summer, thus indicating a reduced annual cycle; and daily minimum temperature rises faster than daily maximum temperature, resulting in a narrowing of the diurnal range of near-surface temperature. (ii) Precipitation increase mainly occurs in early summer and autumn possibly because of an earlier onset and later withdrawal of the Asian summer monsoon. (iii) Both frost and ice days decrease by 1–2 days in spring, early summer, and autumn, and the decrease of frost days on the annual course is inversely related to the precipitation increase. (iv) Degree-days increase all over the TP with peak amplitude in the Qaidam Basin and the southern TP periphery, which will result in distinct melting of the local seasonal frozen ground, and the annual temperature range will decrease with stronger amplitude in south TP.


Sign in / Sign up

Export Citation Format

Share Document