The use of wind turbines and the problem of icing

2021 ◽  
pp. 0309524X2199827
Author(s):  
Cevahir Tarhan ◽  
Mehmet Ali Çil

The world’s energy demand is increasing. Wind energy plays an important role in meeting this demand. Investments in wind energy have been increasing in recent years. It can be said that the source of wind energy will be unlimited since there will be wind as long as there is sun. Most governments meet a large energy need by generating electricity from wind. At the end of 2019, the total amount of electricity generated from wind was 650 GW. Wind energy capacity is increasing with offshore wind pairs. Offshore wind turbines are a new field and research studies are ongoing. Wind turbines have the capacity to be installed anywhere in the world, and each government will have its own energy source. There is a problem of icing in wind power plants installed in cold climates. With this problem, efficiency in wind turbines decreases. Many methods have been found and developed in studies on icing problems. In this article, wind turbines were investigated, states’ perspectives on wind energy, developments and investments in wind energy, and the problem of icing were examined. Many articles in the literature have been reviewed and a solution to the icing problem of wind turbine blades has been sought.

Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1867 ◽  
Author(s):  
Amrit Shankar Verma ◽  
Zhiyu Jiang ◽  
Zhengru Ren ◽  
Zhen Gao ◽  
Nils Petter Vedvik

Installation of wind-turbine blades on monopile-type offshore wind turbines is a demanding task. Typically, a jack-up crane vessel is used, and blades are individually lifted from the vessel deck and docked with the preinstalled hub. During the process of mating, large relative motions are developed between the hub and root due to combined effects of wind-generated blade-root responses and wave-generated monopile vibrations. This can cause impact loads at the blade root and induce severe damages at the blade-root connection. Such events are highly likely to cause the failure of the mating task, while affecting the subsequent activities, and thus require competent planning. The purpose of this paper is to present a probabilistic response-based methodology for estimating the allowable sea states for planning a wind-turbine blade-mating task, considering impact risks with the hub as the hazardous event. A case study is presented where the installation system consisting of blade-lift and monopile system are modelled using multibody formulations. Time-domain analyses are carried out for various sea states, and impact velocities between root and hub are analyzed. Finally, an extreme value analysis using the Gumbel fitting of response parameters is performed and limiting sea state curves are obtained by comparing characteristic extreme responses with allowable values. It is found that the limiting sea states for blade-root mating tasks are low for aligned wind–wave conditions, and further increase with increased wind–wave misalignment. The results of the study also show that the parameter T p is essential for estimating limiting sea states given that this parameter significantly influences monopile vibrations during the blade-root mating task. Overall, the findings of the study can be used for a safer and more cost-effective mating of wind-turbine blades.


2021 ◽  
Vol 13 (5) ◽  
pp. 2862
Author(s):  
Amer Al-Hinai ◽  
Yassine Charabi ◽  
Seyed H. Aghay Kaboli

Despite the long shoreline of Oman, the wind energy industry is still confined to onshore due to the lack of knowledge about offshore wind potential. A spatial-temporal wind data analysis is performed in this research to find the locations in Oman’s territorial seas with the highest potential for offshore wind energy. Thus, wind data are statistically analyzed for assessing wind characteristics. Statistical analysis of wind data include the wind power density, and Weibull scale and shape factors. In addition, there is an estimation of the possible energy production and capacity factor by three commercial offshore wind turbines suitable for 80 up to a 110 m hub height. The findings show that offshore wind turbines can produce at least 1.34 times more energy than land-based and nearshore wind turbines. Additionally, offshore wind turbines generate more power in the Omani peak electricity demand during the summer. Thus, offshore wind turbines have great advantages over land-based wind turbines in Oman. Overall, this work provides guidance on the deployment and production of offshore wind energy in Oman. A thorough study using bankable wind data along with various logistical considerations would still be required to turn offshore wind potential into real wind farms in Oman.


Author(s):  
U. Nopp-Mayr ◽  
F. Kunz ◽  
F. Suppan ◽  
E. Schöll ◽  
J. Coppes

AbstractIncreasing numbers of wind power plants (WPP) are constructed across the globe to reduce the anthropogenic contribution to global warming. There are, however, concerns on the effects of WPP on human health as well as related effects on wildlife. To address potential effects of WPP in environmental impact assessments, existing models accounting for shadow flickering and noise are widely applied. However, a standardized, yet simple and widely applicable proxy for the visibility of rotating wind turbines in woodland areas was largely lacking up to date. We combined land cover information of forest canopy extracted from orthophotos and airborne laser scanning (LiDAR) data to represent the visibility of rotating wind turbines in five woodland study sites with a high spatial resolution. Performing an in-situ validation in five study areas across Europe which resulted in a unique sample of 1738 independent field observations, we show that our approach adequately predicts from where rotating wind turbine blades are visible within woodlands or not. We thus provide strong evidence, that our approach yields a valuable proxy of the visibility of moving rotor blades with high resolution which in turn can be applied in environmental impact assessments of WPP within woodlands worldwide.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 579
Author(s):  
Taimoor Asim ◽  
Sheikh Zahidul Islam ◽  
Arman Hemmati ◽  
Muhammad Saif Ullah Khalid

Offshore wind turbines are becoming increasingly popular due to their higher wind energy harnessing capabilities and lower visual pollution. Researchers around the globe have been reporting significant scientific advancements in offshore wind turbines technology, addressing key issues, such as aerodynamic characteristics of turbine blades, dynamic response of the turbine, structural integrity of the turbine foundation, design of the mooring cables, ground scouring and cost modelling for commercial viability. These investigations range from component-level design and analysis to system-level response and optimization using a multitude of analytical, empirical and numerical techniques. With such wide-ranging studies available in the public domain, there is a need to carry out an extensive yet critical literature review on the recent advancements in offshore wind turbine technology. Offshore wind turbine blades’ aerodynamics and the structural integrity of offshore wind turbines are of particular importance, which can lead towards system’s optimal design and operation, leading to reduced maintenance costs. Thus, in this study, our focus is to highlight key knowledge gaps in the scientific investigations on offshore wind turbines’ aerodynamic and structural response. It is envisaged that this study will pave the way for future concentrated efforts in better understanding the complex behavior of these machines.


Author(s):  
Konstantinos Gryllias ◽  
Junyu Qi ◽  
Alexandre Mauricio ◽  
Chenyu Liu

Abstract The current pace of renewable energy development around the world is unprecedented, with offshore wind in particular proving to be an extremely valuable and reliable energy source. The global installed capacity of offshore wind turbines by the end of 2022 is expected to reach the 46.4 GW, among which 33.9 GW in Europe. Costs are critical for the future success of the offshore wind sector. The industry is pushing hard to make cost reductions to show that offshore wind is economically comparable to conventional fossil fuels. Efficiencies in Operations and Maintenance (O&M) offer potential to achieve significant cost savings as it accounts for around 20%–30% of overall offshore wind farm costs. One of the most critical and rather complex assembly of onshore, offshore and floating wind turbines is the gearbox. Gearboxes are designed to last till the end of the lifetime of the asset, according to the IEC 61400-4 standards. On the other hand, a recent study over approximately 350 offshore wind turbines indicate that gearboxes might have to be replaced as early as 6.5 years. Therefore sensing and condition monitoring systems for onshore, offshore and floating wind turbines are needed in order to obtain reliable information on the state and condition of different critical parts, focusing towards the detection and/or prediction of damage before it reaches a critical stage. The development and use of such technologies will allow companies to schedule actions at the right time, and thus will help reducing the costs of operation and maintenance, resulting in an increase of wind energy at a competitive price and thus strengthening productivity of the wind energy sector. At the academic level a plethora of methodologies have been proposed during the last decades for the analysis of vibration signatures focusing towards early and accurate fault detection with limited false alarms and missed detections. Among others, Envelope Analysis is one of the most important methodologies, where an envelope of the vibration signal is estimated, usually after filtering around a selected frequency band excited by impacts due to the faults. Different tools, such as Kurtogram, have been proposed in order to accurately select the optimum filter parameters (center frequency and bandwidth). Cyclostationary Analysis and corresponding methodologies, i.e. the Cyclic Spectral Correlation and the Cyclic Spectral Coherence, have been proved as powerful tools for condition monitoring. On the other hand the application, test and evaluation of such tools on general industrial cases is still rather limited. Therefore the main aim of this paper is the application and evaluation of advanced diagnostic techniques and diagnostic indicators, including the Enhanced Envelope Spectrum and the Spectral Flatness on real world vibration data collected from vibration sensors on gearboxes in multiple wind turbines over an extended period of time of nearly four years. The diagnostic indicators are compared with classical statistic time and frequency indicators, i.e. Kurtosis, Crest Factor etc. and their effectiveness is evaluated based on the successful detection of two failure events.


Author(s):  
Abdollah A. Afjeh ◽  
◽  
Brett Andersen ◽  
Jin Woo Lee ◽  
Mahdi Norouzi ◽  
...  

Development of novel offshore wind turbine designs and technologies are necessary to reduce the cost of offshore wind energy since offshore wind turbines need to withstand ice and waves in addition to wind, a markedly different environment from their onshore counterparts. This paper focuses on major design challenges of offshore wind turbines and offers an advanced concept wind turbine that can significantly reduce the cost of offshore wind energy as an alternative to the current popular designs. The design consists of a two-blade, downwind rotor configuration fitted to a fixed bottom or floating foundation. Preliminary results indicate that cost savings of nearly 25% are possible compared with the conventional upwind wind turbine designs.


2019 ◽  
Author(s):  
Azadeh Tavousi Tabatabaei ◽  
Seyed Hossein Mamanpush

The demand for wind and other forms of clean energy is increasing in the US and throughout the world. Wind energy is also expected to provide 14.9% of the global electricity demand by 2020. Under this scenario, a significant amount of wind turbine blades (WTBs) will continue to burden our current landfills until a viable recycling strategy is found. Repurposing or recycling of end- of-use wind turbine blade material will provide both economic and environmental attributes.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6539
Author(s):  
Kinga Pławecka ◽  
Jakub Przybyła ◽  
Kinga Korniejenko ◽  
Wei-Ting Lin ◽  
An Cheng ◽  
...  

This paper concerns the recycling of waste material from wind turbine blades. The aim of the research was to determine the possibility of using ground waste material derived from the exploited structures of wind turbines as a filler in geopolymer composites. In order to determine the potential of such a solution, tests were carried out on three different fractions originating from the ground blades of wind turbines, including an analysis of the morphology and chemical composition of particles using SEM and an EDS detector, the analysis of organic and inorganic matter content and tests for multivariate geopolymer composites with the addition of waste material. The compression and flexural strength, density and absorbability tests, among others, were carried out. The composite material made of the geopolymer matrix contained the filler at the level of 5%, 15% and 30% of dry mass. The addition of the filler showed a tendency to decrease the properties of the obtained geopolymer composite. However, it was possible to obtain materials that did not significantly differ in properties from the re-reference sample for the filler content of 5% and 15% of dry mass. As a result of the research, it was found that waste materials from the utilization of used wind power plants can become fillers in geopolymer composites. It was also found that it is possible to increase the strength of the obtained material by lowering the porosity.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6750
Author(s):  
Valery Okulov ◽  
Ivan Kabardin ◽  
Dmitry Mukhin ◽  
Konstantin Stepanov ◽  
Nastasia Okulova

The review reflects physical solutions for de-icing, one of the main problems that impedes the efficient use of wind turbines for autonomous energy resources in cold regions. This topic is currently very relevant for ensuring the dynamic development of wind energy in the Arctic. The review discusses an effective anti-icing strategy for wind turbine blades, including various passive and active physical de-icing techniques using superhydrophobic coatings, thermal heaters, ultrasonic and vibration devices, operating control to determine the optimal methods and their combinations. After a brief description of the active methods, the energy consumption required for their realization is estimated. Passive methods do not involve extra costs, so the review focuses on the most promising solutions with superhydrophobic coatings. Among them, special attention is paid to plastic coatings with a lithographic method of applying micro and nanostructures. This review is of interest to researchers who develop new effective solutions for protection against icing, in particular, when choosing systems for protecting wind turbines.


Sign in / Sign up

Export Citation Format

Share Document