Variable-Capacity Operations with Modular Transits for Shared-Use Corridors

Author(s):  
Xiaowei Shi ◽  
Zhiwei Chen ◽  
Mingyang Pei ◽  
Xiaopeng Li

Since passenger demand in urban transit systems is asymmetrically distributed across different periods in a day and different geographic locations across the cities, the tradeoff between vehicle operating costs and service quality has been a persistent problem in transit operational design. The emerging modular vehicle technology offers us a new perspective to solve this problem. Based on this concept, we propose a variable-capacity operation approach with modular transits for shared-use corridors, in which both dispatch headway and vehicle capacity are decision variables. This problem is rigorously formulated as a mixed integer linear programming model that aims to minimize the overall system cost, including passenger waiting time costs and vehicle operating costs. Because the proposed model is linear, the state-of-the-art commercial solvers (e.g., Gurobi) can be used to obtain the optimal solution of the investigated problem. With numerical experiments, we demonstrate the feasibility of the mathematical model, verify the effectiveness of the proposed model in reducing overall system costs in transit systems, as well as the robustness of the proposed model with different parameter settings.

Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3615
Author(s):  
Adelaide Cerveira ◽  
Eduardo J. Solteiro Pires ◽  
José Baptista

Green energy has become a media issue due to climate changes, and consequently, the population has become more aware of pollution. Wind farms are an essential energy production alternative to fossil energy. The incentive to produce wind energy was a government policy some decades ago to decrease carbon emissions. In recent decades, wind farms were formed by a substation and a couple of turbines. Nowadays, wind farms are designed with hundreds of turbines requiring more than one substation. This paper formulates an integer linear programming model to design wind farms’ cable layout with several turbines. The proposed model obtains the optimal solution considering different cable types, infrastructure costs, and energy losses. An additional constraint was considered to limit the number of cables that cross a walkway, i.e., the number of connections between a set of wind turbines and the remaining wind farm. Furthermore, considering a discrete set of possible turbine locations, the model allows identifying those that should be present in the optimal solution, thereby addressing the optimal location of the substation(s) in the wind farm. The paper illustrates solutions and the associated costs of two wind farms, with up to 102 turbines and three substations in the optimal solution, selected among sixteen possible places. The optimal solutions are obtained in a short time.


2021 ◽  
Vol 13 (3) ◽  
pp. 1190
Author(s):  
Gang Ren ◽  
Xiaohan Wang ◽  
Jiaxin Cai ◽  
Shujuan Guo

The integrated allocation and scheduling of handling resources are crucial problems in the railway container terminal (RCT). We investigate the integrated optimization problem for handling resources of the crane area, dual-gantry crane (GC), and internal trucks (ITs). A creative handling scheme is proposed to reduce the long-distance, full-loaded movement of GCs by making use of the advantages of ITs. Based on this scheme, we propose a flexible crossing crane area to balance the workload of dual-GC. Decomposing the integrated problem into four sub-problems, a multi-objective mixed-integer programming model (MIP) is developed. By analyzing the characteristic of the integrated problem, a three-layer hybrid heuristic algorithm (TLHHA) incorporating heuristic rule (HR), elite co-evolution genetic algorithm (ECEGA), greedy rule (GR), and simulated annealing (SA) is designed for solving the problem. Numerical experiments were conducted to verify the effectiveness of the proposed model and algorithm. The results show that the proposed algorithm has excellent searching ability, and the simultaneous optimization scheme could ensure the requirements for efficiency, effectiveness, and energy-saving, as well as the balance rate of dual-GC.


2014 ◽  
Vol 931-932 ◽  
pp. 578-582
Author(s):  
Sunarin Chanta ◽  
Ornurai Sangsawang

In this paper, we proposed an optimization model that addresses the evacuation routing problem for flood disaster when evacuees trying to move from affected areas to safe places using public transportation. A focus is on the situation of evacuating during high water level when special high vehicles are needed. The objective is to minimize the total traveled distance through evacuation periods where a limited number of vehicles is given. We formulated the problem as a mixed integer programming model based on the capacitated vehicle routing problem with multiple evcuation periods where demand changing by the time. The proposed model has been tested on a real-world case study affected by the severe flooding in Thailand, 2011.


2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Zhenfeng Jiang ◽  
Dongxu Chen ◽  
Zhongzhen Yang

A Synchronous Optimization for Multiship Shuttle Tanker Fleet Design and Scheduling is solved in the context of development of floating production storage and offloading device (FPSO). In this paper, the shuttle tanker fleet scheduling problem is considered as a vehicle routing problem with hard time window constraints. A mixed integer programming model aiming at minimizing total transportation cost is proposed to model this problem. To solve this model, we propose an exact algorithm based on the column generation and perform numerical experiments. The experiment results show that the proposed model and algorithm can effectively solve the problem.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Amir-Mohammad Golmohammadi ◽  
Hasan Rasay ◽  
Zaynab Akhoundpour Amiri ◽  
Maryam Solgi ◽  
Negar Balajeh

Machine learning, neural networks, and metaheuristic algorithms are relatively new subjects, closely related to each other: learning is somehow an intrinsic part of all of them. On the other hand, cell formation (CF) and facility layout design are the two fundamental steps in the CMS implementation. To get a successful CMS design, addressing the interrelated decisions simultaneously is important. In this article, a new nonlinear mixed-integer programming model is presented which comprehensively considers solving the integrated dynamic cell formation and inter/intracell layouts in continuous space. In the proposed model, cells are configured in flexible shapes during the planning horizon considering cell capacity in each period. This study considers the exact information about facility layout design and material handling cost. The proposed model is an NP-hard mixed-integer nonlinear programming model. To optimize the proposed problem, first, three metaheuristic algorithms, that is, Genetic Algorithm (GA), Keshtel Algorithm (KA), and Red Deer Algorithm (RDA), are employed. Then, to further improve the quality of the solutions, using machine learning approaches and combining the results of the aforementioned algorithms, a new metaheuristic algorithm is proposed. Numerical examples, sensitivity analyses, and comparisons of the performances of the algorithms are conducted.


2020 ◽  
Vol 18 (4) ◽  
Author(s):  
Reza Babazadeh ◽  
Ali Sabbaghnia ◽  
Fatemeh Shafipour

: Blood and its products play an undeniable role in human life. In recent years, although both academics and practitioners have investigated blood-related problems, further enhancement is still warranted. In this study, a mixed-integer linear programming model was proposed for local blood supply chain management. A supply network, including temporary and fixed blood donation facilities, blood banks, and blood processing centers, was designed regarding the deteriorating nature of blood. The proposed model was applied in a real case in Urmia, Iran. The numerical results and sensitivity analysis of the key model parameters ensured the applicability of the proposed model.


2017 ◽  
Vol 5 (3) ◽  
pp. 267-278 ◽  
Author(s):  
Peng Jia ◽  
Weilun Zhang ◽  
E Wenhao ◽  
Xueshan Sun

Abstract Due to the long operation cycle of maritime transportation and frequent fluctuations of the bunker fuel price, the refueling expenditure of a chartered ship at different time or ports of call make significant difference. From the perspective of shipping company, an optimal set of refueling schemes for a ship fleet operating on different voyage charter routes is an important decision. To address this issue, this paper presents an approach to optimize the refueling scheme and the ship deployment simultaneously with considering the trend of fuel price fluctuations. Firstly, an ARMA model is applied to forecast a time serials of the fuel prices. Then a mixed-integer nonlinear programming model is proposed to maximize total operating profit of the shipping company. Finally, a case study on a charter company with three bulk carriers and three voyage charter routes is conducted. The results show that the optimal solution saves the cost of 437,900 USD compared with the traditional refueling scheme, and verify the rationality and validity of the model.


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6181
Author(s):  
Olga Chukhno ◽  
Nadezhda Chukhno ◽  
Giuseppe Araniti ◽  
Claudia Campolo ◽  
Antonio Iera ◽  
...  

In next-generation Internet of Things (IoT) deployments, every object such as a wearable device, a smartphone, a vehicle, and even a sensor or an actuator will be provided with a digital counterpart (twin) with the aim of augmenting the physical object’s capabilities and acting on its behalf when interacting with third parties. Moreover, such objects can be able to interact and autonomously establish social relationships according to the Social Internet of Things (SIoT) paradigm. In such a context, the goal of this work is to provide an optimal solution for the social-aware placement of IoT digital twins (DTs) at the network edge, with the twofold aim of reducing the latency (i) between physical devices and corresponding DTs for efficient data exchange, and (ii) among DTs of friend devices to speed-up the service discovery and chaining procedures across the SIoT network. To this aim, we formulate the problem as a mixed-integer linear programming model taking into account limited computing resources in the edge cloud and social relationships among IoT devices.


2020 ◽  
Vol 10 (12) ◽  
pp. 4362 ◽  
Author(s):  
Junsu Kim ◽  
Hongbin Moon ◽  
Hosang Jung

In general, the demand for delivery cannot be fulfilled efficiently due to the excessive traffic in dense urban areas. Therefore, many innovative concepts for intelligent transportation of freight have recently been developed. One of these concepts relies on drone-based parcel delivery using rooftops of city buildings. To apply drone logistics system in cities, the operation design should be adequately prepared. In this regard, a mixed integer programming model for drone operation planning and a heuristic based on block stacking are newly proposed to provide solutions. Additionally, numerical experiments with three different problem sizes are conducted to check the feasibility of the proposed model and to assess the performance of the proposed heuristic. The experimental results show that the proposed model seems to be viable and that the developed heuristic provides very good operation plans in terms of the optimality gap and the computation time.


Author(s):  
Qiang Meng ◽  
Shuaian Wang ◽  
Zhiyuan Liu

A model was developed for network design of a shipping service for large-scale intermodal liners that captured essential practical issues, including consistency with current services, slot purchasing, inland and maritime transportation, multiple-type containers, and origin-to-destination transit time. The model used a liner shipping hub-and-spoke network to facilitate laden container routing from one port to another. Laden container routing in the inland transportation network was combined with the maritime network by defining a set of candidate export and import ports. Empty container flow is described on the basis of path flow and leg flow in the inland and maritime networks, respectively. The problem of network design for shipping service of an intermodal liner was formulated as a mixed-integer linear programming model. The proposed model was used to design the shipping services for a global liner shipping company.


Sign in / Sign up

Export Citation Format

Share Document