Applying Bayesian Optimization for Calibration of Transportation Simulation Models

Author(s):  
Di Sha ◽  
Kaan Ozbay ◽  
Yue Ding

The parameters of a transportation simulation model need to pass through a careful calibration process to ensure that the model’s output is as close as possible to the actual system. Owing to the computationally expensive and black-box nature of a simulation model, there is a need for robust and efficient calibration algorithms. This paper proposes a Bayesian optimization framework for the high-dimensional calibration problem of transportation simulation models. Bayesian optimization uses acquisition functions to determine more promising values for future evaluation, instead of relying on local gradient approximations. It guarantees convergence to the global optimum with a reduced number of evaluations, therefore is very computationally efficient. The proposed algorithm is applied to the calibration of a simulation network coded in simulation of urban mobility (SUMO), an open-source microscopic transportation simulation platform, and compared with a well-known method named simultaneous perturbation stochastic approximation (SPSA). To assess the calibration accuracy, speed distributions obtained from the two models calibrated using these two different methods are compared with the observation. For both the Bayesian optimization and SPSA results, the simulated and observed distributions are validated to be from the same distribution at a 95% confidence level for multiple sensor locations. Thus, the calibration accuracy of the two approaches are both acceptable for a stochastic transportation simulation model. However, Bayesian optimization shows a better convergence and a higher computational efficiency than SPSA. In addition, the comparative results of multiple implementations validate its robustness for a noisy objective function, unlike SPSA which may sometimes get stuck in a local optimum and fail to converge in a global solution.

Transportation simulation model development allows simulating traveller’s decisions, evaluating various transportation management strategies and complex solutions. The aim of the paper is to set the general principles of the transportation simulation model development and validation. The paper contains the overview of the transportation simulation models types with the examples from the conducted projects for the Riga city. The basic steps of the simulation model development procedure: initial data preparation and analysis, transportation model development and simulation, scenarios planning and evaluation, and simulation models outcomes evaluation are considered. Simulation model verification, validation and calibration definitions are given. The basic checks for the transportation macroscopic and microscopic simulation model validation are listed. A summary of the transportation simulation model validation and calibration methods and parameters is given.


Author(s):  
Anton van Beek ◽  
Umar Farooq Ghumman ◽  
Joydeep Munshi ◽  
Siyu Tao ◽  
TeYu Chien ◽  
...  

Abstract Objective-driven adaptive sampling is a widely used tool for the optimization of deterministic black-box functions. However, the optimization of stochastic simulation models as found in the engineering, biological, and social sciences is still an elusive task. In this work, we propose a scalable adaptive batch sampling scheme for the optimization of stochastic simulation models with input-dependent noise. The developed algorithm has two primary advantages: (i) by recommending sampling batches, the designer can benefit from parallel computing capabilities, and (ii) by replicating of previously observed sampling locations the method can be scaled to higher-dimensional and more noisy functions. Replication improves numerical tractability as the computational cost of Bayesian optimization methods is known to grow cubicly with the number of unique sampling locations. Deciding when to replicate and when to explore depends on what alternative minimizes the posterior prediction accuracy at and around the spatial locations expected to contain the global optimum. The algorithm explores a new sampling location to reduce the interpolation uncertainty and replicates to improve the accuracy of the mean prediction at a single sampling location. Through the application of the proposed sampling scheme to two numerical test functions and one real engineering problem, we show that we can reliably and efficiently find the global optimum of stochastic simulation models with input-dependent noise.


2021 ◽  
pp. 1-39
Author(s):  
Siyu Tao ◽  
Anton van Beek ◽  
Daniel Apley ◽  
Wei Chen

Abstract We enhance the Bayesian optimization (BO) approach for simulation-based design of engineering systems consisting of multiple interconnected expensive simulation models. The goal is to find the global optimum design with minimal model evaluation costs. A commonly used approach is to treat the whole system as a single expensive model and apply an existing BO algorithm. This approach is inefficient due to the need to evaluate all the component models in each iteration. We propose a multi-model BO approach that dynamically and selectively evaluates one component model per iteration based on the uncertainty quantification of linked emulators (metamodels) and the knowledge gradient of system response as the acquisition function. Building on our basic formulation, we further solve problems with constraints and feedback couplings that often occur in real complex engineering design by penalizing the objective emulator and reformulating the original problem into a decoupled one. The superior efficiency of our approach is demonstrated through solving two analytical problems and the design optimization of a multidisciplinary electronic packaging system.


2021 ◽  
Vol 16 (2) ◽  
pp. 1-34
Author(s):  
Rediet Abebe ◽  
T.-H. HUBERT Chan ◽  
Jon Kleinberg ◽  
Zhibin Liang ◽  
David Parkes ◽  
...  

A long line of work in social psychology has studied variations in people’s susceptibility to persuasion—the extent to which they are willing to modify their opinions on a topic. This body of literature suggests an interesting perspective on theoretical models of opinion formation by interacting parties in a network: in addition to considering interventions that directly modify people’s intrinsic opinions, it is also natural to consider interventions that modify people’s susceptibility to persuasion. In this work, motivated by this fact, we propose an influence optimization problem. Specifically, we adopt a popular model for social opinion dynamics, where each agent has some fixed innate opinion, and a resistance that measures the importance it places on its innate opinion; agents influence one another’s opinions through an iterative process. Under certain conditions, this iterative process converges to some equilibrium opinion vector. For the unbudgeted variant of the problem, the goal is to modify the resistance of any number of agents (within some given range) such that the sum of the equilibrium opinions is minimized; for the budgeted variant, in addition the algorithm is given upfront a restriction on the number of agents whose resistance may be modified. We prove that the objective function is in general non-convex. Hence, formulating the problem as a convex program as in an early version of this work (Abebe et al., KDD’18) might have potential correctness issues. We instead analyze the structure of the objective function, and show that any local optimum is also a global optimum, which is somehow surprising as the objective function might not be convex. Furthermore, we combine the iterative process and the local search paradigm to design very efficient algorithms that can solve the unbudgeted variant of the problem optimally on large-scale graphs containing millions of nodes. Finally, we propose and evaluate experimentally a family of heuristics for the budgeted variant of the problem.


2020 ◽  
Author(s):  
Alberto Bemporad ◽  
Dario Piga

AbstractThis paper proposes a method for solving optimization problems in which the decision-maker cannot evaluate the objective function, but rather can only express a preference such as “this is better than that” between two candidate decision vectors. The algorithm described in this paper aims at reaching the global optimizer by iteratively proposing the decision maker a new comparison to make, based on actively learning a surrogate of the latent (unknown and perhaps unquantifiable) objective function from past sampled decision vectors and pairwise preferences. A radial-basis function surrogate is fit via linear or quadratic programming, satisfying if possible the preferences expressed by the decision maker on existing samples. The surrogate is used to propose a new sample of the decision vector for comparison with the current best candidate based on two possible criteria: minimize a combination of the surrogate and an inverse weighting distance function to balance between exploitation of the surrogate and exploration of the decision space, or maximize a function related to the probability that the new candidate will be preferred. Compared to active preference learning based on Bayesian optimization, we show that our approach is competitive in that, within the same number of comparisons, it usually approaches the global optimum more closely and is computationally lighter. Applications of the proposed algorithm to solve a set of benchmark global optimization problems, for multi-objective optimization, and for optimal tuning of a cost-sensitive neural network classifier for object recognition from images are described in the paper. MATLAB and a Python implementations of the algorithms described in the paper are available at http://cse.lab.imtlucca.it/~bemporad/glis.


Buildings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 242
Author(s):  
Christoph Schünemann ◽  
David Schiela ◽  
Regine Ortlepp

Can building performance simulation reproduce measured summertime indoor conditions of a multi-residential building in good conformity? This question is answered by calibrating simulated to monitored room temperatures of several rooms of a multi-residential building for an entire summer in two process steps. First, we did a calibration for several days without the residents being present to validate the building physics of the 3D simulation model. Second, the simulations were calibrated for the entire summer period, including the residents’ impact on evolving room temperature and overheating. As a result, a high degree of conformity between simulation and measurement could be achieved for all monitored rooms. The credibility of our results was secured by a detailed sensitivity analysis under varying meteorological conditions, shading situations, and window ventilation or room use in the simulation model. For top floor dwellings, a high overheating intensity was evoked by a combination of insufficient use of night-time window ventilation and non-heat-adapted residential behavior in combination with high solar gains and low heat storage capacities. Finally, the overall findings were merged into a process guideline to describe how a step-by-step calibration of residential building simulation models can be done. This guideline is intended to be a starting point for future discussions about the validity of the simplified boundary conditions which are often used in present-day standard overheating assessment.


2013 ◽  
Vol 309 ◽  
pp. 366-371 ◽  
Author(s):  
František Manlig ◽  
Radek Havlik ◽  
Alena Gottwaldova

This paper deals with research in computer simulation of manufacturing processes. The paper summarizes the procedures associated with developing the model, experimenting with and evaluating the model results. The key area is of experimentation with the simulation model and evaluation using indicators or multi-criteria functions. With regards to the experiment the crucial variables are the simulation model. The key ideas are to set the number of variables, depending on what a given simulation will be. For example, when introducing new technology into production, modify the type of warehouse, saving workers, thus economizing. The simulation models for the operational management uses simplified models, if possible, a minimum number of variables to obtain the result in shortest possible time. These models are more user friendly and the course will be conducted mostly in the background. An example of a criteria function is the number of parts produced or production time. Multi-criteria function has given us the opportunity to make better quality decisions. It is based on the composition of several parameters, including their weight to one end point. The type of evaluation functions, whether it is an indicator or criteria function is selected and based on customer requirements. In most cases it is recommended to use the multi-dimensional function. It gives us a more comprehensive view of the results from the model and facilitates decision-making. The result of this paper is a display of setting parameters for the experimentation on a sample model. Furthermore, the comparisons of results with a multi-criteria objective function and one-criterion indicator.


Author(s):  
Mahyar Asadi ◽  
Ghazi Alsoruji

Weld sequence optimization, which is determining the best (and worst) welding sequence for welding work pieces, is a very common problem in welding design. The solution for such a combinatorial problem is limited by available resources. Although there are fast simulation models that support sequencing design, still it takes long because of many possible combinations, e.g. millions in a welded structure involving 10 passes. It is not feasible to choose the optimal sequence by evaluating all possible combinations, therefore this paper employs surrogate modeling that partially explores the design space and constructs an approximation model from some combinations of solutions of the expensive simulation model to mimic the behavior of the simulation model as closely as possible but at a much lower computational time and cost. This surrogate model, then, could be used to approximate the behavior of the other combinations and to find the best (and worst) sequence in terms of distortion. The technique is developed and tested on a simple panel structure with 4 weld passes, but essentially can be generalized to many weld passes. A comparison between the results of the surrogate model and the full transient FEM analysis all possible combinations shows the accuracy of the algorithm/model.


Author(s):  
Dheeraj Agarwal ◽  
Linghai Lu ◽  
Gareth D. Padfield ◽  
Mark D. White ◽  
Neil Cameron

High-fidelity rotorcraft flight simulation relies on the availability of a quality flight model that further demands a good level of understanding of the complexities arising from aerodynamic couplings and interference effects. One such example is the difficulty in the prediction of the characteristics of the rotorcraft lateral-directional oscillation (LDO) mode in simulation. Achieving an acceptable level of the damping of this mode is a design challenge requiring simulation models with sufficient fidelity that reveal sources of destabilizing effects. This paper is focused on using System Identification to highlight such fidelity issues using Liverpool's FLIGHTLAB Bell 412 simulation model and in-flight LDO measurements from the bare airframe National Research Council's (Canada) Advanced Systems Research Aircraft. The simulation model was renovated to improve the fidelity of the model. The results show a close match between the identified models and flight test for the LDO mode frequency and damping. Comparison of identified stability and control derivatives with those predicted by the simulation model highlight areas of good and poor fidelity.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mohammad Javad Fotuhi ◽  
Zafer Bingul

Purpose This paper aims to develope a novel fractional hybrid impedance control (FHIC) approach for high-sensitive contact stress force tracking control of the series elastic muscle-tendon actuator (SEM-TA) in uncertain environments. Design/methodology/approach In three different cases, the fractional parameters of the FHIC were optimized with the particle swarm optimization algorithm. Its adaptability to the pressure of the sole of the foot on real environments such as grass (soft), carpet (medium) and solid floors (hard) is far superior to traditional impedance control. The main aim of this paper is to derive the dynamic simulation models of the SEM-TA, to develop a control architecture allowing for high-sensitive contact stress force control in three cases and to verify the simulation models and the proposed controller with experimental results. The performance of the optimized controllers was evaluated according to these parameters, namely, maximum overshoot, steady-state error, settling time and root mean squared errors of the positions. Moreover, the frequency robustness analysis of the controllers was made in three cases. Findings Different simulations and experimental results were conducted to verify the control performance of the controllers. According to the comparative results of the performance, the responses of the proposed controller in simulation and experimental works are very similar. Originality/value Origin approach and origin experiment.


Sign in / Sign up

Export Citation Format

Share Document