scholarly journals Mode Switching Control Using Lane Keeping Assist and Waypoints Tracking for Autonomous Driving in a City Environment

Author(s):  
Nadjim Horri ◽  
Olivier Haas ◽  
Sheng Wang ◽  
Mathias Foo ◽  
Manuel Silverio Fernandez

This paper proposes a mode switching supervisory controller for autonomous vehicles. The supervisory controller selects the most appropriate controller based on safety constraints and on the vehicle location with respect to junctions. Autonomous steering, throttle and deceleration control inputs are used to perform variable speed lane keeping assist, standard or emergency braking and to manage junctions, including roundabouts. Adaptive model predictive control with lane keeping assist is performed on the main roads and a linear pure pursuit inspired controller is applied using waypoints at road junctions where lane keeping assist sensors present a safety risk. A multi-stage rule based autonomous braking algorithm performs stop, restart and emergency braking maneuvers. The controllers are implemented in MATLAB® and Simulink™ and are demonstrated using the Automatic Driving Toolbox™ environment. Numerical simulations of autonomous driving scenarios demonstrate the efficiency of the lane keeping assist mode on roads with curvature and the ability to accurately track waypoints at cross intersections and roundabouts using a simpler pure pursuit inspired mode. The ego vehicle also autonomously stops in time at signaled intersections or to avoid collision with other road users.

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Qingyuan Song ◽  
Wen Wang ◽  
Weiping Fu ◽  
Yuan Sun ◽  
Denggui Wang ◽  
...  

AbstractAutonomous vehicles for the intention of human behavior of the estimated traffic participants and their interaction is the main problem in automatic driving system. Classical cognitive theory assumes that the behavior of human traffic participants is completely reasonable when studying estimation of intention and interaction. However, according to the quantum cognition and decision theory as well as practical traffic cases, human behavior including traffic behavior is often unreasonable, which violates classical cognition and decision theory. Based on the quantum cognitive theory, this paper studies the cognitive problem of pedestrian crossing. Through the case analysis, it is proved that the Quantum-like Bayesian (QLB) model can consider the reasonability of pedestrians when crossing the street compared with the classical probability model, being more consistent with the actual situation. The experiment of trajectory prediction proves that the QLB model can cover the edge events in interactive scenes compared with the data-driven Social-LSTM model, being more consistent with the real trajectory. This paper provides a new reference for the research on the cognitive problem of intention on bounded rational behavior of human traffic participants in autonomous driving.


2021 ◽  
Vol 11 (5) ◽  
pp. 2305
Author(s):  
Yongsoon Choi ◽  
Seryong Baek ◽  
Cheonho Kim ◽  
Junkyu Yoon ◽  
Seongkwan Mark Lee

As smart cities become a global topic, interest in smart mobility, the core of smart cities, is also growing. The technology that comes closest to general users is “autonomous driving”. In particular, the successful market entry and establishment of some private companies proved that “autonomous driving” is not technology of the future but imminent reality. However, safety in autonomous vehicles that rely on sensors instead of the driver’s five senses has been the focus of attention from the beginning and continues to be so. In this study, we attempted to counter this interest. Based on the actual data of thirty traffic accidents, assuming the AEBS (Autonomous Emergency Braking System) was installed to assist the driver in safe driving, it was reinterpreted through simulation to see what changes occurred in the accident. In the computer program, PC-Crash, the results were first analyzed through simulation using Euro NCAP (New Car Assessment Program)’s AEBS test standards. Subsequently, the other variables in the AEBS were controlled and the accident was reinterpreted by changing only the angle of the radar detection sensor. As a result, it was confirmed that a total of 27 accidents out of thirty accidents could have been prevented with the AEBS. In addition, it proved that the crash avoidance rate of vehicles gradually increased as the radar angle increased.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3124
Author(s):  
Hyunjin Bae ◽  
Gu Lee ◽  
Jaeseung Yang ◽  
Gwanjun Shin ◽  
Gyeungho Choi ◽  
...  

In autonomous driving, using a variety of sensors to recognize preceding vehicles at middle and long distances is helpful for improving driving performance and developing various functions. However, if only LiDAR or cameras are used in the recognition stage, it is difficult to obtain the necessary data due to the limitations of each sensor. In this paper, we proposed a method of converting the vision-tracked data into bird’s eye-view (BEV) coordinates using an equation that projects LiDAR points onto an image and a method of fusion between LiDAR and vision-tracked data. Thus, the proposed method was effective through the results of detecting the closest in-path vehicle (CIPV) in various situations. In addition, even when experimenting with the EuroNCAP autonomous emergency braking (AEB) test protocol using the result of fusion, AEB performance was improved through improved cognitive performance than when using only LiDAR. In the experimental results, the performance of the proposed method was proven through actual vehicle tests in various scenarios. Consequently, it was convincing that the proposed sensor fusion method significantly improved the adaptive cruise control (ACC) function in autonomous maneuvering. We expect that this improvement in perception performance will contribute to improving the overall stability of ACC.


2021 ◽  
Vol 64 (2) ◽  
pp. 38-42
Author(s):  
Artur Gołowicz ◽  
Sławomir Cholewiński

The paper discusses the details of the work of automation systems for motor vehicles and their methods of testing. The requirements of the new UN Regulation No. 157 were presented as a tool for conducting the type-approval of automated vehicles in the field of the Automated Lane Keeping System (ALKS). The most important requirements and methods of testing ALKS systems for the vehicle type-approval are described. Evaluation of the advantages and disadvantages as well as the effects and social concerns of the implementation of such systems in relation to the road safety, has been carried out.


Author(s):  
Jiayuan Dong ◽  
Emily Lawson ◽  
Jack Olsen ◽  
Myounghoon Jeon

Driving agents can provide an effective solution to improve drivers’ trust in and to manage interactions with autonomous vehicles. Research has focused on voice-agents, while few have explored robot-agents or the comparison between the two. The present study tested two variables - voice gender and agent embodiment, using conversational scripts. Twenty participants experienced autonomous driving using the simulator for four agent conditions and filled out subjective questionnaires for their perception of each agent. Results showed that the participants perceived the voice only female agent as more likeable, more comfortable, and more competent than other conditions. Their final preference ranking also favored this agent over the others. Interestingly, eye-tracking data showed that embodied agents did not add more visual distractions than the voice only agents. The results are discussed with the traditional gender stereotype, uncanny valley, and participants’ gender. This study can contribute to the design of in-vehicle agents in the autonomous vehicles and future studies are planned to further identify the underlying mechanisms of user perception on different agents.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3783
Author(s):  
Sumbal Malik ◽  
Manzoor Ahmed Khan ◽  
Hesham El-Sayed

Sooner than expected, roads will be populated with a plethora of connected and autonomous vehicles serving diverse mobility needs. Rather than being stand-alone, vehicles will be required to cooperate and coordinate with each other, referred to as cooperative driving executing the mobility tasks properly. Cooperative driving leverages Vehicle to Vehicle (V2V) and Vehicle to Infrastructure (V2I) communication technologies aiming to carry out cooperative functionalities: (i) cooperative sensing and (ii) cooperative maneuvering. To better equip the readers with background knowledge on the topic, we firstly provide the detailed taxonomy section describing the underlying concepts and various aspects of cooperation in cooperative driving. In this survey, we review the current solution approaches in cooperation for autonomous vehicles, based on various cooperative driving applications, i.e., smart car parking, lane change and merge, intersection management, and platooning. The role and functionality of such cooperation become more crucial in platooning use-cases, which is why we also focus on providing more details of platooning use-cases and focus on one of the challenges, electing a leader in high-level platooning. Following, we highlight a crucial range of research gaps and open challenges that need to be addressed before cooperative autonomous vehicles hit the roads. We believe that this survey will assist the researchers in better understanding vehicular cooperation, its various scenarios, solution approaches, and challenges.


Author(s):  
Gaojian Huang ◽  
Christine Petersen ◽  
Brandon J. Pitts

Semi-autonomous vehicles still require drivers to occasionally resume manual control. However, drivers of these vehicles may have different mental states. For example, drivers may be engaged in non-driving related tasks or may exhibit mind wandering behavior. Also, monitoring monotonous driving environments can result in passive fatigue. Given the potential for different types of mental states to negatively affect takeover performance, it will be critical to highlight how mental states affect semi-autonomous takeover. A systematic review was conducted to synthesize the literature on mental states (such as distraction, fatigue, emotion) and takeover performance. This review focuses specifically on five fatigue studies. Overall, studies were too few to observe consistent findings, but some suggest that response times to takeover alerts and post-takeover performance may be affected by fatigue. Ultimately, this review may help researchers improve and develop real-time mental states monitoring systems for a wide range of application domains.


2021 ◽  
Vol 11 (13) ◽  
pp. 6016
Author(s):  
Jinsoo Kim ◽  
Jeongho Cho

For autonomous vehicles, it is critical to be aware of the driving environment to avoid collisions and drive safely. The recent evolution of convolutional neural networks has contributed significantly to accelerating the development of object detection techniques that enable autonomous vehicles to handle rapid changes in various driving environments. However, collisions in an autonomous driving environment can still occur due to undetected obstacles and various perception problems, particularly occlusion. Thus, we propose a robust object detection algorithm for environments in which objects are truncated or occluded by employing RGB image and light detection and ranging (LiDAR) bird’s eye view (BEV) representations. This structure combines independent detection results obtained in parallel through “you only look once” networks using an RGB image and a height map converted from the BEV representations of LiDAR’s point cloud data (PCD). The region proposal of an object is determined via non-maximum suppression, which suppresses the bounding boxes of adjacent regions. A performance evaluation of the proposed scheme was performed using the KITTI vision benchmark suite dataset. The results demonstrate the detection accuracy in the case of integration of PCD BEV representations is superior to when only an RGB camera is used. In addition, robustness is improved by significantly enhancing detection accuracy even when the target objects are partially occluded when viewed from the front, which demonstrates that the proposed algorithm outperforms the conventional RGB-based model.


2020 ◽  
Vol 13 (1) ◽  
pp. 89
Author(s):  
Manuel Carranza-García ◽  
Jesús Torres-Mateo ◽  
Pedro Lara-Benítez ◽  
Jorge García-Gutiérrez

Object detection using remote sensing data is a key task of the perception systems of self-driving vehicles. While many generic deep learning architectures have been proposed for this problem, there is little guidance on their suitability when using them in a particular scenario such as autonomous driving. In this work, we aim to assess the performance of existing 2D detection systems on a multi-class problem (vehicles, pedestrians, and cyclists) with images obtained from the on-board camera sensors of a car. We evaluate several one-stage (RetinaNet, FCOS, and YOLOv3) and two-stage (Faster R-CNN) deep learning meta-architectures under different image resolutions and feature extractors (ResNet, ResNeXt, Res2Net, DarkNet, and MobileNet). These models are trained using transfer learning and compared in terms of both precision and efficiency, with special attention to the real-time requirements of this context. For the experimental study, we use the Waymo Open Dataset, which is the largest existing benchmark. Despite the rising popularity of one-stage detectors, our findings show that two-stage detectors still provide the most robust performance. Faster R-CNN models outperform one-stage detectors in accuracy, being also more reliable in the detection of minority classes. Faster R-CNN Res2Net-101 achieves the best speed/accuracy tradeoff but needs lower resolution images to reach real-time speed. Furthermore, the anchor-free FCOS detector is a slightly faster alternative to RetinaNet, with similar precision and lower memory usage.


Author(s):  
Changchun Liu ◽  
Chankyu Lee ◽  
Andreas Hansen ◽  
J. Karl Hedrick ◽  
Jieyun Ding

Model predictive control (MPC) is a popular technique for the development of active safety systems. However, its high computational cost prevents it from being implemented on lower-cost hardware. This paper presents a computationally efficient predictive controller for lane keeping assistance systems. The controller shares control with the driver, and applies a correction steering when there is a potential lane departure. Using the explicit feedback MPC, a multi-parametric nonlinear programming problem with a human-in-the-loop model and safety constraints is formulated. The cost function is chosen as the difference between the linear state feedback function to be determined and the resultant optimal control sequence of the MPC problem solved off-line given the current state. The piecewise linear feedback function is obtained by solving the parametric programming with an approximation approach. The effectiveness of the controller is evaluated through numerical simulations.


Sign in / Sign up

Export Citation Format

Share Document