Plant based cross-linkers for tissue engineering applications

2020 ◽  
pp. 088532822097927
Author(s):  
Abhishek Indurkar ◽  
Ashish Pandit ◽  
Ratnesh Jain ◽  
Prajakta Dandekar

Utility of plant-based materials in tissue engineering has exponentially increased over the years. Recent efforts in this area have been focused on substituting synthetic cross-linkers with natural ones derived from biological sources. These cross-linkers are essentially derived from the vegetative components of plants therefore suitably categorised as ‘green’ and renewable materials. Utilization of plant based cross-linkers in scaffolds and hydrogels offers several advantages compared to the synthetic ones. Natural compounds, like ferulic acid and genipin, when incorporated into scaffolds can promote cellular proliferation and growth, by regulation of growth factors. They participate in crucial activities, thus providing impetus for cell growth, function, differentiation and angiogenesis. Several natural compounds inherently possess anti-microbial, antioxidant and anti-inflammatory effects, which enhance the inherent characteristics of the scaffolds. Versatility of natural cross-linkers can be exploited for diverse applications. Integrating such potent molecules can enable the scaffold to display relevant characteristics for each function. This review article focuses on the recent developments with plant based cross-linkers that are employed for scaffold synthesis and their applications, which may be explored to synthesize scaffolds suitable for diverse biomedical applications.

2021 ◽  
Author(s):  
Natan Roberto Barros ◽  
Yi Chen ◽  
Vahid Hosseini ◽  
Weiyue Wang ◽  
Rohollah Nasiri ◽  
...  

Over the decades, researchers have strived to synthesize and modify nature-inspired biomaterials, with the primary aim to address the challenges of designing functional biomaterials for regenerative medicine and tissue engineering....


Processes ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 673 ◽  
Author(s):  
Ioannis Partheniadis ◽  
Ioannis Nikolakakis ◽  
Ivo Laidmäe ◽  
Jyrki Heinämäki

Electrospinning (ES) is a convenient and versatile method for the fabrication of nanofibers and has been utilized in many fields including pharmaceutical and biomedical applications. Conventional ES uses a needle spinneret for the generation of nanofibers and is associated with many limitations and drawbacks (i.e., needle clogging, limited production capacity, and low yield). Needleless electrospinning (NLES) has been proposed to overcome these problems. Within the last two decades (2004–2020), many research articles have been published reporting the use of NLES for the fabrication of polymeric nanofibers intended for drug delivery and biomedical tissue engineering applications. The objective of the present mini-review article is to elucidate the potential of NLES for designing such novel nanofibrous drug delivery systems and tissue engineering constructs. This paper also gives an overview of the key NLES approaches, including the most recently introduced NLES method: ultrasound-enhanced electrospinning (USES). The technologies underlying NLES systems and an evaluation of electrospun nanofibers are presented. Even though NLES is a promising approach for the industrial production of nanofibers, it is a multivariate process, and more research work is needed to elucidate its full potential and limitations.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2096
Author(s):  
Agnieszka Sobczak-Kupiec ◽  
Anna Drabczyk ◽  
Wioletta Florkiewicz ◽  
Magdalena Głąb ◽  
Sonia Kudłacik-Kramarczyk ◽  
...  

Regenerative medicine is becoming a rapidly evolving technique in today’s biomedical progress scenario. Scientists around the world suggest the use of naturally synthesized biomaterials to repair and heal damaged cells. Hydroxyapatite (HAp) has the potential to replace drugs in biomedical engineering and regenerative drugs. HAp is easily biodegradable, biocompatible, and correlated with macromolecules, which facilitates their incorporation into inorganic materials. This review article provides extensive knowledge on HAp and collagen-containing compositions modified with drugs, bioactive components, metals, and selected nanoparticles. Such compositions consisting of HAp and collagen modified with various additives are used in a variety of biomedical applications such as bone tissue engineering, vascular transplantation, cartilage, and other implantable biomedical devices.


Gels ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 38
Author(s):  
Duygu Çimen ◽  
Merve Asena Özbek ◽  
Nilay Bereli ◽  
Bo Mattiasson ◽  
Adil Denizli

Cryogels are interconnected macroporous materials that are synthesized from a monomer solution at sub-zero temperatures. Cryogels, which are used in various applications in many research areas, are frequently used in biomedicine applications due to their excellent properties, such as biocompatibility, physical resistance and sensitivity. Cryogels can also be prepared in powder, column, bead, sphere, membrane, monolithic, and injectable forms. In this review, various examples of recent developments in biomedical applications of injectable cryogels, which are currently scarce in the literature, made from synthetic and natural polymers are discussed. In the present review, several biomedical applications of injectable cryogels, such as tissue engineering, drug delivery, therapeutic, therapy, cell transplantation, and immunotherapy, are emphasized. Moreover, it aims to provide a different perspective on the studies to be conducted on injectable cryogels, which are newly emerging trend.


2019 ◽  
Vol 26 (38) ◽  
pp. 6834-6850 ◽  
Author(s):  
Mohammad Omaish Ansari ◽  
Kalamegam Gauthaman ◽  
Abdurahman Essa ◽  
Sidi A. Bencherif ◽  
Adnan Memic

: Nanobiotechnology has huge potential in the field of regenerative medicine. One of the main drivers has been the development of novel nanomaterials. One developing class of materials is graphene and its derivatives recognized for their novel properties present on the nanoscale. In particular, graphene and graphene-based nanomaterials have been shown to have excellent electrical, mechanical, optical and thermal properties. Due to these unique properties coupled with the ability to tune their biocompatibility, these nanomaterials have been propelled for various applications. Most recently, these two-dimensional nanomaterials have been widely recognized for their utility in biomedical research. In this review, a brief overview of the strategies to synthesize graphene and its derivatives are discussed. Next, the biocompatibility profile of these nanomaterials as a precursor to their biomedical application is reviewed. Finally, recent applications of graphene-based nanomaterials in various biomedical fields including tissue engineering, drug and gene delivery, biosensing and bioimaging as well as other biorelated studies are highlighted.


2021 ◽  
Vol 06 ◽  
Author(s):  
Ayekpam Chandralekha Devi ◽  
G. K. Hamsavi ◽  
Simran Sahota ◽  
Rochak Mittal ◽  
Hrishikesh A. Tavanandi ◽  
...  

Abstract: Algae (both micro and macro) have gained huge attention in the recent past for their high commercial value products. They are the source of various biomolecules of commercial applications ranging from nutraceuticals to fuels. Phycobiliproteins are one such high value low volume compounds which are mainly obtained from micro and macro algae. In order to tap the bioresource, a significant amount of work has been carried out for large scale production of algal biomass. However, work on downstream processing aspects of phycobiliproteins (PBPs) from algae is scarce, especially in case of macroalgae. There are several difficulties in cell wall disruption of both micro and macro algae because of their cell wall structure and compositions. At the same time, there are several challenges in the purification of phycobiliproteins. The current review article focuses on the recent developments in downstream processing of phycobiliproteins (mainly phycocyanins and phycoerythrins) from micro and macroalgae. The current status, the recent advancements and potential technologies (that are under development) are summarised in this review article besides providing future directions for the present research area.


1968 ◽  
Vol 5 (1) ◽  
pp. 83-94 ◽  
Author(s):  
Ronald E. Frank ◽  
Paul E. Green

Recent developments in numerical taxonomy appear to show applicability for many classification problems in marketing. This review article describes some of the approaches to numerical classification and presents illustrative marketing applications. Current limitations of the procedures are also discussed.


Biomedicines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 563
Author(s):  
Magali Seguret ◽  
Eva Vermersch ◽  
Charlène Jouve ◽  
Jean-Sébastien Hulot

Cardiac tissue engineering aims at creating contractile structures that can optimally reproduce the features of human cardiac tissue. These constructs are becoming valuable tools to model some of the cardiac functions, to set preclinical platforms for drug testing, or to alternatively be used as therapies for cardiac repair approaches. Most of the recent developments in cardiac tissue engineering have been made possible by important advances regarding the efficient generation of cardiac cells from pluripotent stem cells and the use of novel biomaterials and microfabrication methods. Different combinations of cells, biomaterials, scaffolds, and geometries are however possible, which results in different types of structures with gradual complexities and abilities to mimic the native cardiac tissue. Here, we intend to cover key aspects of tissue engineering applied to cardiology and the consequent development of cardiac organoids. This review presents various facets of the construction of human cardiac 3D constructs, from the choice of the components to their patterning, the final geometry of generated tissues, and the subsequent readouts and applications to model and treat cardiac diseases.


2021 ◽  
Author(s):  
Marissa Morales-Moctezuma ◽  
Sebastian G Spain

Nanogels have emerged as innovative platforms for numerous biomedical applications including gene and drug delivery, biosensors, imaging, and tissue engineering. Polymerisation-induced thermal self-assembly (PITSA) has been shown to be suitable...


Sign in / Sign up

Export Citation Format

Share Document