scholarly journals Investigation and development of friction stir welding process for unreinforced polyphenylene sulfide and reinforced polyetheretherketone

2018 ◽  
Vol 32 (9) ◽  
pp. 1242-1267 ◽  
Author(s):  
Hossain Ahmed ◽  
MJL van Tooren ◽  
Jonathan Justice ◽  
Ramy Harik ◽  
Addis Kidane ◽  
...  

The joining of thermoplastics through welding offers numerous advantages over mechanical joining. Most importantly, it eliminates the use of costly fasteners and has only a limited effect on the strength of the parts being joined. Since it does not require the introduction of holes, loading pins, and the associated stress concentrations, a specific form of welding, friction stir welding (FSW), was investigated for the creation of butt joints of unreinforced polyphenylene sulfide (PPS) and short carbon fiber (CF)-reinforced polyetheretherketone (PEEK) plates. Unlike metals, analytical models and experimental results show that the heat generated by the FSW tool is insufficient to produce the heat required to weld thermoplastic materials. Therefore, a second heat source is required for preheating these thermoplastics. In this research, a resistance type surface heater was placed at the bottom of two identical weld pieces to produce good quality welds. Two types of shoulder design such as rotating shoulder and stationary shoulder were developed in this study. Taguchi’s design of experiment method was utilized to develop the welding process, where heating duration, material temperature, tool rotational speed, and tool traverse speed were used as the welding parameters. One of the process parameters, tool traverse speed, had significant influence on the tensile strength of PPS samples. While PPS sample showed relatively lower tensile strength with higher traverse speed, short CF-reinforced PEEK samples had higher tensile strength with a higher traverse speed. In addition to tensile tests, fracture toughness tests were performed for both PPS and PEEK samples to observe the influence of unwelded segments in the welded parts. In this study, joint efficiency of PEEK samples was found to be higher than that of PPS samples. Micrographs of PEEK samples showed uniform homogenous mixture of part materials.

2012 ◽  
Vol 622-623 ◽  
pp. 323-329
Author(s):  
Ebtisam F. Abdel-Gwad ◽  
A. Shahenda ◽  
S. Soher

Friction stir welding (FSW) process is a solid state welding process in which the material being welded does not melt or recast. This process uses a non-consumable tool to generate frictional heat in the abutting surfaces. The welding parameters and tool pin profile play major roles in deciding the weld quality. In this investigation, an attempt has been made to understand effects of process parameters include rotation speeds, welding speeds, and pin diameters on al.uminum weldment using double shoulder tools. Thermal and tensile behavior responses were examined. In this direction temperatures distribution across the friction stir aluminum weldment were measured, besides tensile strength and ductility were recorded and evaluated compared with both single shoulder and aluminum base metal.


2020 ◽  
Vol 863 ◽  
pp. 85-95
Author(s):  
Truong Minh Nhat ◽  
Truong Quoc Thanh ◽  
Tu Vinh Thong ◽  
Tran Trong Quyet ◽  
Luu Phuong Minh

This study presents conducted heat simulations and experimental jointing flat-plate of aluminum alloy 6061 and SUS 304. Temperature is simulated by the COMSOL software in three states: (1) Preheat the Friction Stir Welding (FSW) by TIG welding, (2) Thermal contact resistance between Aluminium and steel, and (3) The welding process using stiring friction is simulated. The simulations intended to predicting the temperature which is used for preheat and welding process to ensuring the required solid-state welding. The temperature is also determined and checked by a thermal imager comparing with simulation results. Besides, the results of tensile strength is carried out. The Box - Behnken method is used to identify the relationship between the welding parameters (rotation, speed and offset), temperature and tensile strength. The maximum tensile strength is 77% compared to the strength of aluminum alloy. The optimal set of parameters for the process is n = 676 rpm, v = 46 mm / min and x = 0.6 mm. The optimizing welding parameters to achieving good quality of welding process are described. SEM images to determine some properties of welding materials. This is also the basis for initial research to identify some defects in welding of two different materials (IMC thickness and interconnected pores) and the cause of these defects.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
R. Suryanarayanan ◽  
V. G. Sridhar ◽  
L. Natrayan ◽  
S. Kaliappan ◽  
Anjibabu Merneedi ◽  
...  

Friction stir welding is a solid-state welding method that produces joints with superior mechanical and metallurgical properties. However, the negative effects of the thermal cycle during welding dent the mechanical performance of the weld joint. Hence, in this research study, the joining of aluminum tailor welded blanks by friction stir welding is carried out in underwater conditions by varying the welding parameters. The tensile tests revealed that the underwater welded samples showed better results when compared to the air welded samples. Maximum tensile strength of 229.83 MPa was obtained at 1000 rpm, 36 mm/min. The improved tensile strength of the underwater welded samples was credited to the suppression of the precipitation of the secondary precipitates due to the cooling action provided by the water. The lowest hardness of 72 HV was obtained at the edge of the stir zone which indicated the weakest region in the weld zone.


Friction stir welding (FSW) is a type of joining process, it uses solid state welding method, also it is widely used in same type and different types of welding like Al, Mg, Cu, Ti, and their alloys. In this study, friction stir welding of two aluminum alloys AA6082 is done with many sets of tool rotation speed, feed and axial force. In this experimental work FSW process was carried out for AA 6082 and optimization of that FSW process parameters were find out for maximum tensile strength values. Taguchi’s L4 orthogonal array was utilized for three parameters – tool rotational speed (TRS), traverse speed (TS), and axial force (AXF) with two levels. Several optimization was carried out with Taguchi method of grey relational tests. During the investigation obtained highest tensile strength value fourth sample 60.887 N/mm2 and lowest hardness strength value second sample 31HRB and bead appearance found very best surface occurred fourth test plates at the same time angle distortion observed very fine in the fourth test plate. The result was calculated for both ultimate tensile strength and hardness value. The expected grey relational grade was shifted from 0.704 to 0.792, it was the highest value received throughout this experimental results. It was mentioned that the multi-responses of FSW process was improved with this method.


Author(s):  
Truong Minh Nhat ◽  
Truong Quoc Thanh ◽  
Tran Trong Quyet ◽  
Luu Phuong Minh

Friction stir welding exploits its solid-state process behavior to join aluminum to steel, which differs in thermal and mechanical properties, and where a combination of these metallic alloys by fusion welding prompts a deleterious reaction as a result of the melting and resolidification phases. Recently, hybrid techniques have been employed in FSW for several materials and alloys, particularly for steel–steel joining. These methods are generally aimed to pre-heat the steel plate materials. This study presents conducted heat simulations and experimental jointing flat-plate of aluminum alloy 6061 and SUS 304. Temperature is simulated by the COMSOL software in three states: (1) Preheat the Friction Stir Welding (FSW) by TIG welding, (2) Thermal contact resistance between aluminum and steel, and (3) The welding process using stirring friction is simulated. The simulations intended to predict the temperature, which is used for the preheating and welding process to ensuring the required solid-state welding. The temperature is also determined and checked by a thermal imager comparing with simulation results. Besides, the results of tensile strength are carried out. The Box - Behnken method is used to identify the relationship between the welding parameters (rotation, speed, and offset), temperature, and tensile strength. The maximum tensile strength is 77% compared to the strength of the aluminum alloy. The optimal set of parameters for the process is n = 676 rpm, v = 46 mm / min and x = 0.6 mm. The optimizing welding parameters to achieving a good quality of the welding process are described. SEM images to determine some properties of welding materials. This is also the basis for initial research to identify some defects in the welding of two different materials (IMC thickness and interconnected pores) and the cause of these defects.


2020 ◽  
Vol 14 (1) ◽  
pp. 6259-6271
Author(s):  
Srinivasa Rao Pedapati ◽  
Dhanish Paramaguru ◽  
Mokhtar Awang ◽  
Hamed Mohebbi ◽  
Sharma V Korada

Underwater Friction Stir Welding (UFSW) is a solid-state joining technique which uses a non-consumable tool to weld metals. The objective of this investigation is to evaluate the mechanical properties of the AA5052 Aluminium alloy joints prepared by UFSW. The effect of different type of welding tools and welding parameters on the weld joint properties are studied. Square, tapered cylindrical and taper threaded cylindrical type of welding tools have been used to produce the joints with the tool rotational speed varying from 500 rpm to 2000 rpm while the welding speed varying from 50 mm/min to 150 mm/min. Tensile strength, micro-hardness distribution, fracture features, micro-and macrostructure of the fabricated weld joints have been evaluated. The effect of welding process parameters that influences the mechanical properties and fracture characterization of the joints are explained in detail. A maximum Ultimate Tensile Strength (UTS) value of 222.07 MPa is attained with a gauge elongation of 14.78%. Microstructural evaluation revealed that most of the fracture are found on the thermal mechanically affected zone (TMAZ)adjacent to the weld nugget zone (WNZ) due to bigger grain sizes. It is found that most of the joints exhibit ductile characteristics in failure. Fractography analysis has been used to find the behavior of weld joints in failure.


2017 ◽  
Vol 37 (1) ◽  
pp. 6-21 ◽  
Author(s):  
C. Rajendrana ◽  
K. Srinivasan ◽  
V. Balasubramanian ◽  
H. Balaji ◽  
P. Selvaraj

AbstractAA2014 aluminum alloy (Al-Cu alloy) has been widely utilized in fabrication of lightweight structures like aircraft structures, demanding high strength to weight ratio and good corrosion resistance. The fusion welding of these alloys will lead to solidification problems such as hot cracking. Friction stir welding is a new solid state welding process, in which the material being welded does not melt and recast. Lot of research works have been carried out by many researchers to optimize process parameters and establish empirical relationships to predict tensile strength of friction stir welded butt joints of aluminum alloys. However, very few investigations have been carried out on friction stir welded lap joints of aluminum alloys. Hence, in this investigation, an attempt has been made to optimize friction stir lap welding (FSLW) parameters to attain maximum tensile strength using statistical tools such as design of experiment (DoE), analysis of variance (ANOVA), response graph and contour plots. By this method, it is found that maximum tensile shear fracture load of 12.76 kN can be achieved if a joint is made using tool rotational speed of 900 rpm, welding speed of 110 mm/min, tool shoulder diameter of 12 mm and tool tilt angle of 1.5°.


2021 ◽  
Vol 28 (4) ◽  
pp. 1-13
Author(s):  
Najeeb Salman Abtan ◽  
Jawdat Ali Yagoob ◽  
Ayshan Mohammed Shukri

Friction Stir Welding (FSW) is a solid-state welding technique with non-fusible rotary welds. Heat is generated by the friction produced between the weld tool and the two opposite surfaces of the two welded parts and the tool works on mechanical mixing with the presence of heat, pressure, and heat generated, reaching approximately (80-90%) of the melting point of the metal to be welded. In this study, Al 1050 H14 aluminum with a thickness of (6mm) was used for the purpose of welding it by means of the friction stir welding process in a butt welding method to obtain similar welding joints. A set with a square stitching tool Made of alloy steel was used by using a milling machine, with fixed (rotational speed of 1008 rpm and linear velocity of 40mm / min), an inclination angle of (2o), and counterclockwise rotation. The efficiency of welded joints was evaluated through static mechanical tests. Tensile tests, microscopic hardness, and visual examination. The results for all welds showed that the mixing zone (NZ) consists of fine grains of equal axes compared to the base metal. When welding on one side and in one path, the microstructure of HAZ was similar to the base metal. TAMZ was a transition region between HAZ and NZ. As for welding on one side, with two paths and three paths, the structure turned into a fine crystalline structure. By increasing the number of paths per side, the welding efficiency of the welded sample increased as the best efficiency was from one side and three paths (76.215%). Through the results, the tensile strength increases with the increase in the number of paths, as the best tensile strength was obtained when conducting the welding process from one side and by three paths, which is (93.653 MPa). It is equivalent to 76.21% of the tensile strength of the base metal. The hardness value in the weld zone (NZ) is higher than the other two zones (HAZ, TMAZ) due to the occurrence of dynamic recrystallization, which results in very fine and equiaxial crystals, but the hardness value in the weld zone remains less than the hardness value of the base metal.


Author(s):  
Sanjeev Verma ◽  
Vinod Kumar

Aluminium and its alloys are lightweight, corrosion-resistant, affordable and high-strength material and find wide applications in shipbuilding, automotive, constructions, aerospace and other industrial sectors. In applications like aerospace, marine and automotive industries, there is a need to join components made of different aluminium alloys, viz. AA6061 and AA5083. In this study friction stir welding (FSW) is used to join dissimilar plates made of AA6061-T6 and AA5083-O. The effect of varying tool pin profile, tool rotation speed, tool feed rate and tilt angle of the tool has been investigated on the tensile strength and percentage elongation of the welded joints. Box-Behkan design, with four input parameters and three levels of each parameter has been employed to decide the set of experimental runs. The regression models have been developed to investigate the influence of welding variables on the tensile strength and elongation of the welded joint. It is revealed that with the increase in welding parameters like tool rpm, tool feed rate and tilt angle of the tool, both the mechanical properties increase, reach a maximum level, followed by a decrease with further increase in the value of parameters. Amongst different types of tool pin profiles used, the FSW tool having straight cylindrical (SC) pin profile is found to yield the maximum strength and elongation of the welded joint for different combinations of welding parameters. Multiple response optimization indicates that the maximum UTS (135.83 MPa) and TE (4.35%) are obtained for the welded joint fabricated using FSW tool having SC pin profile, tilted at 1.11° and operating at tool speed and feed rate of 1568 rpm and 39.53 mm/min., respectively.


2011 ◽  
Vol 189-193 ◽  
pp. 3266-3269 ◽  
Author(s):  
Yu Hua Chen ◽  
Peng Wei ◽  
Quan Ni ◽  
Li Ming Ke

Titanium alloy TC1 and Aluminum alloy LF6 were jointed by friction stir welding (FSW), and the influence of process parameters on formation of weld surface, cross-section morphology and tensile strength were studied. The results show that, Titanium and Aluminum dissimilar alloy is difficult to be joined by FSW, and some defects such as cracks and grooves are easy to occur. When the rotational speed of stir head(n) is 750r/min and 950r/min, the welding speed(v) is 118mm/min or 150mm/min, a good formation of weld surface can be obtained, but the bonding of titanium/aluminum interface in the cross-section of weld joint is bad when n is 750r/min which results in a low strength joint. When n is 950r/min and v is 118mm/min,the strength of the FSW joint of Titanium/Aluminum dissimilar materials is 131MPa which is the highest.


Sign in / Sign up

Export Citation Format

Share Document