Performance evaluation of HDPE/MWCNT and HDPE/kenaf composites

2019 ◽  
pp. 089270571986827 ◽  
Author(s):  
Nayan Pundhir ◽  
Sunny Zafar ◽  
Himanshu Pathak

The present work deals with the microwave-assisted compression moulding of high-density polyethylene (HDPE)-based composites. In the present work, 20 wt% of reinforcement in the form of kenaf and multi-walled carbon nanotube (MWCNT) was used to fabricate HDPE/kenaf and HDPE/MWCNT polymer composites. The mechanical characterizations of the microwave-processed composites were carried out in terms of uniaxial tensile test with different strain rate, multistep stress relaxation, flexural and impact test. The uniaxial tensile test revealed that the tensile modulus of microwave-processed four-layered HDPE/kenaf polymer composite was 35.2% higher than that of HDPE/MWCNT polymer composite. The HDPE/MWCNT polymer composite showed a minimum of 1.25 GPa and a maximum of 4.7 GPa of elastic modulus when tested at different strain rate. The impact energy absorbed by the HDPE/kenaf polymer composite (1.055 J) was 81.12% higher than the HDPE/MWCNT polymer composite (0.582 J).

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3117
Author(s):  
Ihor Dzioba ◽  
Sebastian Lipiec ◽  
Robert Pala ◽  
Piotr Furmanczyk

Tensile uniaxial test is typically used to determine the strength and plasticity of a material. Nominal (engineering) stress-strain relationship is suitable for determining properties when elastic strain dominates (e.g., yield strength, Young’s modulus). For loading conditions where plastic deformation is significant (in front of a crack tip or in a neck), the use of true stress and strain values and the relationship between them are required. Under these conditions, the dependence between the true values of stresses and strains should be treated as a characteristic—a constitutive relationship of the material. This article presents several methodologies to develop a constitutive relationship for S355 steel from tensile test data. The constitutive relationship developed was incorporated into a finite element analysis of the tension test and verified with the measured tensile test data. The method of the constitutive relationship defining takes into account the impact of high plastic strain, the triaxiality stress factor, Lode coefficient, and material weakness due to the formation of microvoids, which leads to obtained correctly results by FEM (finite elements method) calculation. The different variants of constitutive relationships were applied to the FEM loading simulation of the three-point bending SENB (single edge notched bend) specimen to evaluate their applicability to the calculation of mechanical fields in the presence of a crack.


2020 ◽  
Vol 9 (1) ◽  
pp. 2100-2102

The surface temperature of hot die steel reaches typically up to 550ºC or above during processes like hot extrusion and casting non-ferrous material. The present paper explores the impact of austenitizing temperature as well as tempering temperature on the tensile strength of hot die steel. Heat treatment is done at three different austenitizing temperatures of 1010ºC, 1030ºC, and 1050ºC, followed by tempering done at two different temperatures of 540ºC and 580°C. Tempering is done twice for two hours. Metallographic grinding, polishing, and then etching using 2% Nital is done to investigate the microstructure of hot die steel with respect to its heat treatment. It is found that the grain size of hot die steel increases with an increase in austenitizing temperature. The impact on tensile strength of hot die steel for its heat treatment is examined by conducting the uniaxial tensile test to fracture. And investigation of the morphology of the fracture surface produced after the tensile test is done. It was found that hot die steel with large grain size exhibits lesser tensile strength. Whereas, the one having smaller grain has higher tensile strength that is found to be in accordance with the Hall-Patch equation


2021 ◽  
Vol 71 (03) ◽  
pp. 359-364
Author(s):  
Abir Roy ◽  
Abhishek Kumar

In the present study, AlMgSi alloy was processed through multi-axial compression (MAC) to produce ultrafine-grained microstructure at room temperature. The AlMgSi alloys are widely used in automobile industries for making cylinder heads and brake disks etc. MAC was performed up to three cycles and showed improvement in mechanical properties. The impact of different strain levels upon microstructure changes is investigated using electron backscatter diffraction (EBSD). The average grain size reduced from an initial average grain size of ~ 124 to ~ 3 μm after completion of three cycles of MAC processing. Samples were tested for mechanical properties using uniaxial tensile test, hardness measurements, and corrosion. Tensile test results show a considerable increase in yield strength from ~90 MPa to ~249 MPa after 3 cycles of MAC. The average hardness value increased from 52 VHN to 90 VHN after 3 cycles of MAC. The corrosion resistance of MAC processed samples was found to decrease in comparison to solution-treated samples.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 419
Author(s):  
Jakub Gajewski ◽  
Przemysław Golewski ◽  
Tomasz Sadowski

Adhesive bonding are becoming increasingly important in civil and mechanical engineering, in the field of mobile applications such as aircraft or automotive. Adhesive joints offer many advantages such as low weight, uniform stress distribution, vibration damping properties or the possibility of joining different materials. The paper presents the results of numerical modeling and the use of neural networks in the analysis of dual adhesive single-lap joints subjected to a uniaxial tensile test. The dual adhesive joint was created through the use of adhesives with various parameters in terms of stiffness and strength. In the axis of the overlap, there was a point bonded joint characterized by greater stiffness and strength, and on the outside, there was a bonded joint limited by the edges of the overlap and characterized by lower stiffness and strength. It is an innovative solution for joining technology and the influence of such parameters as the thickness of one of the adherends, the radius of the point bonded joint and the material parameters of both adhesive layers were analyzed. The joint is characterized by a two-stage degradation process, i.e., after the damage of the rigid adhesive, the flexible adhesive ensures the integrity of the entire joint. For numerical modeling, the Finite Element Method (FEM) and cohesive elements was used, which served as input data to an Artificial Neural Network (ANN). The applied approach allowed the impact of individual parameters on the maximum force, initiation energy, and fracture energy to be studied.


Author(s):  
Gauri Mahalle ◽  
Omkar Salunke ◽  
Nitin Kotkunde ◽  
Amit Kumar Gupta ◽  
Swadesh Kumar Singh

Abstract The study of anisotropic deformation behavior of material plays a key role in optimizing the hot working process parameters. Further, trustworthiness of Finite Element (FE) analysis in hot working condition is highly dependent on accurate input of mechanical properties and anisotropic yield parameters. In present work, two different anisotropic yield criteria, namely; Hill 1948 and Barlat 1989 are developed from Room Temperature (RT) to 500 °C and different slow strain rate conditions (0.01, 0.001 and 0.0001 s−1) for Inconel 718 alloy. First, uniaxial tensile test carried out from RT to 500 °C with an interval of 100°C and at quasi-static strain rate conditions at different orientation of a sheet (0°, 45° and 90°). Based on the tensile test data, extended Von-Mises isotropic criterion i.e. Hill 1948 and Barlat 1989 yield criterion were developed at different conditions. The predictability of yield criteria has been verified using yield loci, variation of anisotropic coefficient and yield stresses. The various static parameters such as correlation coefficient, relative error and standard deviation are considered to compare the yield criteria. Based on the comparison, Barlat 1989 yield criterion shows good in agreement with experimental data.


Sign in / Sign up

Export Citation Format

Share Document