On PVC-PP composite matrix for 4D applications: Flowability, mechanical, thermal, and morphological characterizations

2021 ◽  
pp. 089270572110597
Author(s):  
Nishant Ranjan ◽  
Ranvijay Kumar ◽  
Rupinder Singh ◽  
Vinay Kumar

Thermoplastics such as; polyvinyl chloride (PVC) and polypropylene (PP) have applications in different sectors such as; automobile, aerospace, biomedical, textile etc. due to cost-effectiveness, biodegradability, high mouldability, easy availability and good mechanical properties. The shape memory performances of these thermoplastics are crucial for extending the four-dimensional (4D) printing applications. But hitherto little has been reported on flowability, mechanical, thermal, morphological and shape memory properties of PVC-PP composite. In this study, twin-screw compounding has been employed on PVC and PP thermoplastics (in single and blended form) to prepare feedstock filaments for fused filament fabrication (FFF). The investigations have been made for flowability (melt flow index (MFI), mechanical (tensile strength and elongation), thermal (melting point) morphological, Fourier transform infrared spectroscopy (FTIR) analysis, and shape memory effect on different feedstock filaments (prepared with neat PVC, 75%PVC-25%PP, 50%PVC-50%PP, 25%PVC-75%PP, and neat PP). The results have been supported by fracture analysis of photomicrographs obtained from scanning electron microscopy (SEM). The results of the study suggested that tensile strength was maximum for 50%PVC-50%PP (23.57 MPa) and minimum for neat PP (8.89 MPa). Further percentage shape recovery was observed maximum for neat PVC and minimum for neat PP.

2019 ◽  
pp. 089270571988601 ◽  
Author(s):  
Rupinder Singh ◽  
Ranvijay Kumar ◽  
Pawanpreet ◽  
Mohit Singh ◽  
Jatenderpal Singh

The almond skin powder is one of the biodegradable and biocompatible food wastes that can be used as reinforcement in polylactic acid (PLA) for preparation of biomedical scaffolds/implants (for high mechanical performance) by fused filament fabrication. The present study deals with the melt processing of almond skin powder as reinforcement from 0 wt% to 5 wt% in the PLA matrix by twin-screw extrusion process. The results of the study suggested that reinforcing the almond skin powder as 2.5 wt% in the PLA matrix mechanically strengthens the feedstock filaments but the increase in the proportion up to 5 wt% reduces the mechanical strength to a significant level. A similar trend has been observed in differential scanning calorimeter observations for thermal stability analysis. As regard to the rheological property is concerned, the melt flow index shows a significant reduction with reinforcement of almond skin powder in PLA. The results are also supported by photomicrographic analysis (for surface properties) and Taguchi-based optimization of twin-screw extrusion process parameters (for multifactor optimization).


Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 101 ◽  
Author(s):  
Sithiprumnea Dul ◽  
Luiz Gustavo Ecco ◽  
Alessandro Pegoretti ◽  
Luca Fambri

The present work reports on the production and characterization of acrylonitrile butadiene styrene (ABS) hybrid nanocomposite filaments incorporating graphene nanoplatelets (GNPs) and carbon nanotubes (CNTs) suitable for fused filament fabrication (FFF). At first, nanocomposites with a total nanofiller content of GNP and/or CNT of 6 wt.% and a GNP/CNT relative percentage ratio of 0, 10, 30, 50, 70, and 100 were produced by melt compounding and compression molding. Their mechanical, electrical resistivity, and electromagnetic interference shielding effectiveness (EMI SE) properties were evaluated. The hybrid nanocomposites showed a linear increase in modulus and decrease in strength as a function of GNP content; on the other hand, the addition of CNT in hybrid nanocomposites determined a positive increase in electrical conductivity, but a potentially critical decrease of melt flow index. Due to the favorable compromise between processability and enhancement of performance (i.e., mechanical and electrical properties), the hybrid composition of 50:50 GNP/CNT was selected as the most suitable for the filament production of 6 wt.% carbonaceous nanocomposites. EMI SE of ABS-filled single CNT and hybrid GNP/CNT nanofillers obtained from compression molding reached the requirement for applications (higher than −20 dB), while slightly lower EMI SE values (in the range −12/−16 dB) were obtained for FFF parts dependent on the building conditions.


2018 ◽  
Vol 773 ◽  
pp. 67-71 ◽  
Author(s):  
Paweesinee Chatkunakasem ◽  
Panisa Luangjuntawong ◽  
Aphiwat Pongwisuthiruchte ◽  
Chuanchom Aumnate ◽  
Pranut Potiyaraj

The objective of this study is to improve high density polyethylene (HDPE) properties for 3D printing by addition of graphene and low density polyethylene (LDPE). Graphene was prepared by modified Hummer’s method. The prepared graphene was characterized by the infrared spectroscopy and the X-ray diffraction analysis (XRD). Graphene/HDPE and LDPE/HDPE composites were successfully prepared through the melt-blending technique using a twin-screw extruder. The melt flow index (MFI) and differential scanning calorimetry (DSC) were employed to characterize neat HDPE and the modified HDPE. FTIR and XRD results show that graphite was successfully changed into graphene completely and MFI of graphene/HDPE and LDPE/HDPE decreased as the amount of graphene and LDPE in the composite blends increased. DSC results show that the addition of low crystalline polymers can reduce a crystallization temperature and crystallinity content.


2013 ◽  
Vol 701 ◽  
pp. 42-46 ◽  
Author(s):  
Abd Aziz Noor Zuhaira ◽  
Rahmah Mohamed

This research is to identify the difference in melt flow and mechanical properties in hybrid composites between kenaf and rice husk that each of the filler was compounded with composite material of calcium carbonate (CaCO3) and high density polyethylene (HDPE) in different loading amount. Different filler loading up to 30 parts of kenaf fibers and rice husk particulate were mixed with the fixed 30% amount of CaCO3. Compounded hybrid composite were prepared and tested for melt flow index, tensile and impact strength. Addition of both fillers had decreased melt flow index (MFI). MFI of rice husk/CaCO3 was higher than kenaf/CaCO3 in HDPE composites. Tensile strength, elongation at break and impact properties of both hybrid composites had decreased with increasing filler content. Tensile strength of kenaf/CaCO3 was higher than rice husk/CaCO3 due to intrinsic fiber structure of kenaf which has some reinforcing effect compared to rice husk. While, impact strength of rice husk/CaCO3 was improved with addition of filler but drastically decrease as the rice husk content were increased up to 30% due to high silica content in rice husk. The Youngs Modulus was increased with addition of natural fibers in CaCO3/HDPE composite.


Author(s):  
Ibrahim Hamarat ◽  
Emel Kuram ◽  
Babur Ozcelik

In this study, acrylonitrile butadiene styrene polymer was exposed to 12 injection cycles to investigate the influence of recycling number on the mechanical, rheological, and morphological properties. Also, binary and ternary blends including different weight percentages and recycling number of virgin–recycled polymers were prepared. A slight decrement was found in the tensile strength values with recycling number. All blends including recycled polymer (binary or ternary) gave lower tensile strength values with respect to 100% virgin polymer. Strain at break value was decreased after twelve times recycling; however, no clear tendency was observed with the presence of different ratios of virgin polymer to recycled polymer. Impact strength of the polymer decreased with recycling number. There was relatively large drop in the third recycling, from 72 kJ/m2 to 38.5 kJ/m2; however, further recycling induced in a slower drop in the impact strength to 32.5 kJ/m2. All blends including recycled material gave lower impact strength values as compared to 100% virgin polymer. It was observed that the melt flow index values increased with the recycling number, a total of 26.53% after twelve times recycling. All blends containing recycled material showed higher melt flow index values as compared to 100% virgin polymer.


2005 ◽  
Vol 21 (3) ◽  
pp. 219-230 ◽  
Author(s):  
Arup Choudhury ◽  
Mandira Mukherjee ◽  
Basudam Adhikari

The present investigation deals with the viability of the use of recycled milk pouch material, which is a 50:50 mixture of LDPE and LLDPE, and the scope for improvement of its properties by combining it with virgin LDPE-LLDPE (50/50). Melt flow index (MFI), rheological properties, thermal and mechanical properties of the pure materials and their formulated blends containing recycled milk pouches were studied. The properties of the recycled materials were not as satisfactory as those of the corresponding virgin materials. But a significant improvement in viscosity, crystallinity, tensile strength and elongation at break of the recycled LDPE-LLDPE material was achieved by blending it with the corresponding virgin LDPE-LLDPE blend.


2019 ◽  
pp. 089270571986462 ◽  
Author(s):  
Rupinder Singh ◽  
Ranvijay Kumar ◽  
Shubham Tiwari ◽  
Shubham Vishwakarma ◽  
Shivam Kakkar ◽  
...  

In this study, an innovative route for secondary recycling (with zirconium oxide (ZrO2) reinforcement) has been proposed based on melt processing of high-density polyethylene (HDPE) in low-temperature bearing applications. Initially, secondary recycled HDPE, acrylonitrile butadiene styrene, and nylon 6 thermoplastic composites were investigated for melt flow index (MFI) according to ASTM D1238 standard. Based on the acceptable MFI, secondary recycled HDPE matrix was selected for second-stage processing on twin screw extrusion (TSE). The final process involves reinforcement of ZrO2 into HDPE matrix by TSE in 60:40 ratio (by weight %) for preparation of feedstock filament (for possible 3-D printing of bearings). The results of the study suggest that for processing of HDPE, 40% ZrO2 composite matrix, 50 r min−1 screw speed, 190°C barrel temperature, and 15 kg applied load are the best setting of TSE (for maximizing the tensile strength of feedstock filament). The results are also supported by wear properties, thermal stability, and morphological analysis (based on scanning electron microscopy and electron-dispersive X-ray analysis).


2018 ◽  
Vol 13 (3) ◽  
pp. 155892501801300
Author(s):  
Fei Wang ◽  
Lichao Liu ◽  
Ping Xue ◽  
Mingyin Jia ◽  
Hua Sun

Ultrahigh molecular weight polyethylene (UHMWPE) and high-density polyethylene (HDPE) blend fibers with the highest tensile strength of 1.13 GPa were prepared by a melt spinning process. The crystal structure and mechanical behavior of the as-spun filaments and fibers were studied by differential scanning calorimetry (DSC), scanning electron microscopy (SEM), atomic force microscope (AFM), X-ray diffraction (XRD), sound velocity orientation test and tensile strength test. The results suggested that the degree of molecular chain orientation, crystallinity and mechanical properties of the blend fibers were improved by blending with the low melt flow index (MFI) HDPE. The crystal grains of low MFI HDPE blend fibers that were formed by more highly oriented molecular chains could be stretched more effectively in the drawing direction, and the improved mechanical properties were due to the more regular and compact crystal structure.


2020 ◽  
Vol 990 ◽  
pp. 204-208
Author(s):  
Atiwat Wiriya-Amornchai ◽  
Prathumrat Nu-Yang ◽  
Pheerapong Bunroek

This research aims to study the mechanical, thermal and rheological of eggshell powder (ESP) filled polylactic acid (PLA) with and without adding soybean oil (SBO). The ESP filled in PLA at 10%wt were compounded by using an internal machine at 190°C. SBO was filled with various contents between 0-10 %wt in PLA-ESP composites. Morphological, mechanical, rheological and thermal properties were investigated on the sample obtained by an injection molding. The result indicated that the ultimate tensile strength and strain decreased with SBO in PLA-ESP composites. However, the strain has increased obviously up when adding SBO. This was due to the presence of microvoids that was confirmed by scanning electron microscope. Furthermore, SBO played an important role reduce between polymer-polymer interaction and ESP particles. Melt flow index of PLA-ESP composites with and without SBO exhibited higher than neat PLA. Adding SBO into PLA-ESP composites reduced onset temperature degradation (Tonset) and maximum temperature degradation (Tmax) while ESP increased of char residue content.


2014 ◽  
Vol 215 (24) ◽  
pp. 2430-2436 ◽  
Author(s):  
Li Sun ◽  
Wei Min Huang ◽  
Haibao Lu ◽  
Kok Jiak Lim ◽  
Ye Zhou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document