On secondary recycling of ZrO2-reinforced HDPE filament prepared from domestic waste for possible 3-D printing of bearings

2019 ◽  
pp. 089270571986462 ◽  
Author(s):  
Rupinder Singh ◽  
Ranvijay Kumar ◽  
Shubham Tiwari ◽  
Shubham Vishwakarma ◽  
Shivam Kakkar ◽  
...  

In this study, an innovative route for secondary recycling (with zirconium oxide (ZrO2) reinforcement) has been proposed based on melt processing of high-density polyethylene (HDPE) in low-temperature bearing applications. Initially, secondary recycled HDPE, acrylonitrile butadiene styrene, and nylon 6 thermoplastic composites were investigated for melt flow index (MFI) according to ASTM D1238 standard. Based on the acceptable MFI, secondary recycled HDPE matrix was selected for second-stage processing on twin screw extrusion (TSE). The final process involves reinforcement of ZrO2 into HDPE matrix by TSE in 60:40 ratio (by weight %) for preparation of feedstock filament (for possible 3-D printing of bearings). The results of the study suggest that for processing of HDPE, 40% ZrO2 composite matrix, 50 r min−1 screw speed, 190°C barrel temperature, and 15 kg applied load are the best setting of TSE (for maximizing the tensile strength of feedstock filament). The results are also supported by wear properties, thermal stability, and morphological analysis (based on scanning electron microscopy and electron-dispersive X-ray analysis).

2019 ◽  
pp. 089270571988601 ◽  
Author(s):  
Rupinder Singh ◽  
Ranvijay Kumar ◽  
Pawanpreet ◽  
Mohit Singh ◽  
Jatenderpal Singh

The almond skin powder is one of the biodegradable and biocompatible food wastes that can be used as reinforcement in polylactic acid (PLA) for preparation of biomedical scaffolds/implants (for high mechanical performance) by fused filament fabrication. The present study deals with the melt processing of almond skin powder as reinforcement from 0 wt% to 5 wt% in the PLA matrix by twin-screw extrusion process. The results of the study suggested that reinforcing the almond skin powder as 2.5 wt% in the PLA matrix mechanically strengthens the feedstock filaments but the increase in the proportion up to 5 wt% reduces the mechanical strength to a significant level. A similar trend has been observed in differential scanning calorimeter observations for thermal stability analysis. As regard to the rheological property is concerned, the melt flow index shows a significant reduction with reinforcement of almond skin powder in PLA. The results are also supported by photomicrographic analysis (for surface properties) and Taguchi-based optimization of twin-screw extrusion process parameters (for multifactor optimization).


Polymers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2089 ◽  
Author(s):  
Chan-Woo Park ◽  
Won-Jae Youe ◽  
Seok-Ju Kim ◽  
Song-Yi Han ◽  
Ji-Soo Park ◽  
...  

Kraft lignin (KL) or plasticized KL (PKL)/poly(lactic acid) (PLA) composites, containing different lignin contents and with and without the coupling agent, were prepared in this study using twin-screw extrusion at 180 °C. Furthermore, ε-caprolactone and polymeric diphenylmethane diisocyanate (pMDI) were used as a plasticizer of KL and a coupling agent to improve interfacial adhesion, respectively. It was found that lignin plasticization improved lignin dispersibility in the PLA matrix and increased the melt flow index due to decrease in melt viscosity. The tensile strength of KL or PKL/PLA composites was found to decrease as the content of KL and PKL increased in the absence of pMDI, and increased due to pMDI addition. The existence of KL and PKL in the composites decreased the thermal degradation rate against the temperature and increased char residue. Furthermore, the diffusion coefficient of water in the composites was also found to decrease due to KL or PKL addition.


Polymers ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1161 ◽  
Author(s):  
Chan-Woo Park ◽  
Won-Jae Youe ◽  
Song-Yi Han ◽  
Ji-Soo Park ◽  
Eun-Ah Lee ◽  
...  

Poly(butylene succinate) (PBS)/wood flour (WF) composites with different WF content were prepared by twin-screw extrusion at 160 °C. With increasing WF content, the tensile strength of the PBS/WF composite without polymeric diphenylmethane diisocyante (pMDI) decreased, while that of the composite with pMDI increased. The addition of kraft lignin (KL) deteriorated the tensile properties of the composites both with and without pMDI. The melt flow index (MFI) decreased with increasing WF content, but increased with increasing KL content. The addition of pMDI caused an increase in the melt viscosity of the PBS/WF and PBS/WF/KL composites, resulting in a decrease in the MFI. The composites had lower thermal stability than neat PBS. The exotherms of the PBS/WF (50/50) composite appeared at a higher temperature than that of the neat PBS, but the PBS/WF/KL (50/50/20) composites had similar exotherms as the neat PBS. The addition of KL caused a decrease in the crystallization rate of PBS.


Polymers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1333 ◽  
Author(s):  
Olga Mysiukiewicz ◽  
Mateusz Barczewski ◽  
Katarzyna Skórczewska ◽  
Danuta Matykiewicz

This article presents the effect of twin-screw extrusion processing parameters, including temperature and rotational speed of screws, on the structure and properties of four grades of polylactide (PLA). To evaluate the critical processing parameters for PLA and the possibilities for oxidative and thermomechanical degradation, Fourier-transform infrared spectroscopy (FT-IR), oscillatory rheological analysis, and differential scanning calorimetry (DSC) measurements were used. The influence of degradation induced by processing temperature and high shearing conditions on the quality of the biodegradable polyesters with different melt flow indexes (MFIs)was investigated by color analysis within the CIELab scale. The presented results indicate that considering the high-temperature processing of PLA, the high mass flow index and low viscosity of the polymer reduce its time of residence in the plastifying unit and therefore limit discoloration and reduction of molecular weight due to the degradation process during melt mixing, whereas the initial molecular weight of the polymer is not an essential factor.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Jia Ying Tong ◽  
Nishata Royan Rajendran Royan ◽  
Yong Chuen Ng ◽  
Mohd Hafizuddin Ab Ghani ◽  
Sahrim Ahmad

WPCs are being used in a large number of applications in the automotive, construction, electronic, and aerospace industries. There are an increasing number of research studies and developments in WPC technology involving rice husk as fillers. This study investigated the effects of different compositions of rice husk (RH) filler on the mechanical and morphological properties of recycled HDPE (rHDPE) composite. The composites were prepared with five different loading contents of RH fibers (0, 10, 20, 30, and 40 wt%) using the twin screw extrusion method. Maleic acid polyethylene (MAPE) was added as a coupling agent. Results showed that tensile and flexural properties improved with increasing RH loading. However, the impact strength of the composites decreased as the RH loading increased. SEM micrographs revealed good interfacial bonding between the fiber and polymer matrix.


2020 ◽  
pp. 089270572092511 ◽  
Author(s):  
Vinay Kumar ◽  
Rupinder Singh ◽  
IPS Ahuja

This study reports investigation on nano-sized (5–10 nm) graphene (Gr)-reinforced, secondary (2°) recycled acrylonitrile–butadiene–styrene (ABS) as a smart composite material for 3D and 4D applications. Gr was blended (in different weight proportions) with 2°-recycled ABS granules mechanically for selection of composition/proportion after ascertaining rheological property (based upon melt flow index according to ASTM D 1238), thermal stability based upon differential scanning calorimetry, and magnetic property based upon vibration sample magnetometry. The selected compositions/proportions of ABS-Gr composite was further processed with a twin-screw extruder by varying screw temperature and torque. The results of the study suggest that as regards to mechanical properties (peak strength and Shore D hardness) are concerned, the best settings are 20 wt% Gr reinforcement in ABS at a screw temperature 210°C with torque of 0.4 Nm. The corresponding heat capacity and magnetization for the selected composition/proportion was observed as 0.77 J/g and 0.10 × 10−5 emu (+magnetization), 0.080 × 10−5 emu (−magnetization), respectively. The coercivity of the selected compositions ranges from 79.19 Oe to 1260.34 Oe (+coercivity) and 4.64 Oe to 639.50 Oe (−coercivity), whereas the retentivity of the investigated compositions ranges from 2.36 × 10−5 G to 5.44 × 10−4 G (+retentivity) and 4.31 × 10−5 G to 3.48 × 10−5 G (−retentivity). The results have been counter verified based upon optical photo micrographs, porosity analysis, scanning electron microscopy analysis, and energy-dispersive spectroscopy analysis.


2014 ◽  
Vol 53 (4) ◽  
pp. 379-386 ◽  
Author(s):  
Michael A. Gunning ◽  
Luke M. Geever ◽  
John A. Killion ◽  
John G. Lyons ◽  
Clement L. Higginbotham

Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 549 ◽  
Author(s):  
José Sanes ◽  
Cristian Sánchez ◽  
Ramón Pamies ◽  
María-Dolores Avilés ◽  
María-Dolores Bermúdez

This review is focused on the recent developments of nanocomposite materials that combine a thermoplastic matrix with different forms of graphene or graphene oxide nanofillers. In all cases, the manufacturing method of the composite materials has been melt-processing, in particular, twin-screw extrusion, which can then be followed by injection molding. The advantages of this processing route with respect to other alternative methods will be highlighted. The results point to an increasing interest in biodegradable matrices such as polylactic acid (PLA) and graphene oxide or reduced graphene oxide, rather than graphene. The reasons for this will also be discussed.


Sign in / Sign up

Export Citation Format

Share Document