Effect of Soybean Oil in Eggshell Powder Filled Polylactic Acid Composites on its Mechanical, Thermal and Rheological Properties

2020 ◽  
Vol 990 ◽  
pp. 204-208
Author(s):  
Atiwat Wiriya-Amornchai ◽  
Prathumrat Nu-Yang ◽  
Pheerapong Bunroek

This research aims to study the mechanical, thermal and rheological of eggshell powder (ESP) filled polylactic acid (PLA) with and without adding soybean oil (SBO). The ESP filled in PLA at 10%wt were compounded by using an internal machine at 190°C. SBO was filled with various contents between 0-10 %wt in PLA-ESP composites. Morphological, mechanical, rheological and thermal properties were investigated on the sample obtained by an injection molding. The result indicated that the ultimate tensile strength and strain decreased with SBO in PLA-ESP composites. However, the strain has increased obviously up when adding SBO. This was due to the presence of microvoids that was confirmed by scanning electron microscope. Furthermore, SBO played an important role reduce between polymer-polymer interaction and ESP particles. Melt flow index of PLA-ESP composites with and without SBO exhibited higher than neat PLA. Adding SBO into PLA-ESP composites reduced onset temperature degradation (Tonset) and maximum temperature degradation (Tmax) while ESP increased of char residue content.

2019 ◽  
Vol 394 ◽  
pp. 85-89
Author(s):  
Kęstutis Beleška ◽  
Virgilijus Valeika ◽  
Virginija Jankauskaite ◽  
Violeta Valeikiene

Natural biopolymers were studied for their possible role as biodegradable fillers forlow-density polyethylene (LDPE) films. LDPE/biopolymer blends and films were prepared andcharacterized by the melt flow index (MFI) and tensile test. The addition of biopolymer to LDPEreduced the MFI values, the tensile strength and modulus, whereas the elongation at break increased.Interfacial interaction was better for LDPE/biopolymer blends containing soybean oil. Blendsprepared with oil showed the same behaviour as LDPE/biopolymer blends, indicating thatbiopolymer was the main factor that influenced the properties of blend.


2018 ◽  
Vol 762 ◽  
pp. 192-196 ◽  
Author(s):  
Walid Fermas ◽  
Remo Merijs Meri ◽  
Mustapha Kaci ◽  
Janis Zicans

This paper deals with the characterization of the physico-mechanical properties of starch-grafted-polyethylene (Starch-g-PE)/unmodified Algerian halloysite nanotubes (HNT) nanocomposites prepared by melt compounding. The nanoclay was incorporated at various filler contents, i.e., 1.5, 3 and 5 wt%. Rheological and tensile properties of the nanocomposites were evaluated by different techniques and the results obtained are compared with those of virgin Starch-g-PE matrix. The study shows a decrease in melt flow index (MFI) values upon increasing the HNT content, which indicates a restriction in the polymer chains mobility due to the confinement effect of HNT. Further, a tensile strength is also improved.


Author(s):  
Ali J Salman ◽  
Ali Assim Al-Obaidi ◽  
Dalya H Al-Mamoori ◽  
Lina M Shaker ◽  
Ahmed A Al-Amiery

Abstract The polyurethane (PU) has been showing a dramatic increase in applications related to material science and technology. However, the mechanical, physical and thermal properties could be further improved by loading PU with zirconia (Zr) to create renewable materials known as polyurethane–zirconia (PUZ) composites. In this study, PU matrix was treated with wt.% Zr at 0.5, 1.0, 1.5 and 2.0. In this study, the thermo-mechanical properties and the morphology were investigated of PU and PUZ nano-samples. The images of the scanning electron microscope (SEM) were the prime tool in investigating PU and PUZ surfaces and fractured surfaces showing vanishing the cracks and formation of agglomeration on the sample PUZ-1.5%. In addition, the tensile strength, Young’s modulus and maximum loading were improved by 36.7, 31.8 and 39.1%, respectively, at Zr loading of 1.5 wt.%. The flexural stress and the load were improved by 94.3% and 93.6%, respectively, when Zr loading was 1.5 wt.%. The impact without and with a notch was improved by 110.7% and 62.6%, respectively, at Zr loading of 1.5 wt.%. The the morphologies of the PU surface and Zr surface supported by SEM images. Regarding the storage modulus ability of PU and PUZ composites, Zr loading has negatively influenced E. The E functioning temperature was observed to move from 142 to 183°C. Another effect was determined by adding a small amount of Zr. This small amount was enough to shift the crystallization temperature (${T}_c$) and the melting temperature (${T}_m$) of PU from 125 to 129°C and from 150 to 144°C, respectively.


2013 ◽  
Vol 701 ◽  
pp. 42-46 ◽  
Author(s):  
Abd Aziz Noor Zuhaira ◽  
Rahmah Mohamed

This research is to identify the difference in melt flow and mechanical properties in hybrid composites between kenaf and rice husk that each of the filler was compounded with composite material of calcium carbonate (CaCO3) and high density polyethylene (HDPE) in different loading amount. Different filler loading up to 30 parts of kenaf fibers and rice husk particulate were mixed with the fixed 30% amount of CaCO3. Compounded hybrid composite were prepared and tested for melt flow index, tensile and impact strength. Addition of both fillers had decreased melt flow index (MFI). MFI of rice husk/CaCO3 was higher than kenaf/CaCO3 in HDPE composites. Tensile strength, elongation at break and impact properties of both hybrid composites had decreased with increasing filler content. Tensile strength of kenaf/CaCO3 was higher than rice husk/CaCO3 due to intrinsic fiber structure of kenaf which has some reinforcing effect compared to rice husk. While, impact strength of rice husk/CaCO3 was improved with addition of filler but drastically decrease as the rice husk content were increased up to 30% due to high silica content in rice husk. The Youngs Modulus was increased with addition of natural fibers in CaCO3/HDPE composite.


Author(s):  
Ibrahim Hamarat ◽  
Emel Kuram ◽  
Babur Ozcelik

In this study, acrylonitrile butadiene styrene polymer was exposed to 12 injection cycles to investigate the influence of recycling number on the mechanical, rheological, and morphological properties. Also, binary and ternary blends including different weight percentages and recycling number of virgin–recycled polymers were prepared. A slight decrement was found in the tensile strength values with recycling number. All blends including recycled polymer (binary or ternary) gave lower tensile strength values with respect to 100% virgin polymer. Strain at break value was decreased after twelve times recycling; however, no clear tendency was observed with the presence of different ratios of virgin polymer to recycled polymer. Impact strength of the polymer decreased with recycling number. There was relatively large drop in the third recycling, from 72 kJ/m2 to 38.5 kJ/m2; however, further recycling induced in a slower drop in the impact strength to 32.5 kJ/m2. All blends including recycled material gave lower impact strength values as compared to 100% virgin polymer. It was observed that the melt flow index values increased with the recycling number, a total of 26.53% after twelve times recycling. All blends containing recycled material showed higher melt flow index values as compared to 100% virgin polymer.


2005 ◽  
Vol 21 (3) ◽  
pp. 219-230 ◽  
Author(s):  
Arup Choudhury ◽  
Mandira Mukherjee ◽  
Basudam Adhikari

The present investigation deals with the viability of the use of recycled milk pouch material, which is a 50:50 mixture of LDPE and LLDPE, and the scope for improvement of its properties by combining it with virgin LDPE-LLDPE (50/50). Melt flow index (MFI), rheological properties, thermal and mechanical properties of the pure materials and their formulated blends containing recycled milk pouches were studied. The properties of the recycled materials were not as satisfactory as those of the corresponding virgin materials. But a significant improvement in viscosity, crystallinity, tensile strength and elongation at break of the recycled LDPE-LLDPE material was achieved by blending it with the corresponding virgin LDPE-LLDPE blend.


Materials ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3047 ◽  
Author(s):  
Young Shin Kim ◽  
Jae Kyung Kim ◽  
Euy Sik Jeon

Among the composite manufacturing methods, injection molding has higher time efficiency and improved processability. The production of composites via injection molding requires a pre-process to mix and pelletize the matrix polymer and reinforcement material. Herein, we studied the effect of extrusion process conditions for making pellets on the mechanical and thermal properties provided by injection molding. Polyamide 6 (PA6) was used as the base, and composites were produced by blending carbon fibers and Al2O3 as the filler. To determine the optimum blending ratio, the mechanical properties, thermal conductivity, and melt flow index (MI) were measured at various blending ratios. With this optimum blending ratio, pellets were produced by changing the temperature and RPM conditions, which are major process variables during compounding. Samples were fabricated by applying the same injection conditions, and the mechanical strength, MI values, and thermal properties were measured. The mechanical strength increased slightly as the temperature and RPM increased, and the MI and thermal conductivity also increased. The results of this study can be used as a basis for specifying the conditions of the mixing and compounding process such that the desired mechanical and thermal properties are obtained.


2018 ◽  
Vol 13 (3) ◽  
pp. 155892501801300
Author(s):  
Fei Wang ◽  
Lichao Liu ◽  
Ping Xue ◽  
Mingyin Jia ◽  
Hua Sun

Ultrahigh molecular weight polyethylene (UHMWPE) and high-density polyethylene (HDPE) blend fibers with the highest tensile strength of 1.13 GPa were prepared by a melt spinning process. The crystal structure and mechanical behavior of the as-spun filaments and fibers were studied by differential scanning calorimetry (DSC), scanning electron microscopy (SEM), atomic force microscope (AFM), X-ray diffraction (XRD), sound velocity orientation test and tensile strength test. The results suggested that the degree of molecular chain orientation, crystallinity and mechanical properties of the blend fibers were improved by blending with the low melt flow index (MFI) HDPE. The crystal grains of low MFI HDPE blend fibers that were formed by more highly oriented molecular chains could be stretched more effectively in the drawing direction, and the improved mechanical properties were due to the more regular and compact crystal structure.


Author(s):  
Emel Kuram

In this study, the ageing behaviour of glass-fibre-reinforced poly(oxymethylene) composite at different conditions was investigated. The ageing was performed in various controlled environments, namely in air at room temperature, in water at room temperature and in an oven at the temperature of 100 ℃. Tensile and flexural tests were conducted to determine the mechanical properties, melt flow index was measured to determine the rheological property and scanning electron microscopy was used to observe the morphological property of unaged and aged poly(oxymethylene) samples. A reduction in both tensile and flexural strength was observed with all ageing environment. The worst strength retention was obtained with water ageing. Water absorbed by glass-fibre-reinforced poly(oxymethylene) composite had a detrimental influence on the tensile and flexural strength. Tensile strength was affected by the ageing environments. The decrease in the tensile strength of air and thermally aged poly(oxymethylene) was slower than that of water aged poly(oxymethylene), and the tensile strength of aged samples decreased as the ageing time increased. The combined actions of heat, air and water (thermal + water + air ageing) did not further degrade glass-fibre-reinforced poly(oxymethylene) compared to only water ageing at the room temperature. All tensile stress–strain and flexural load–deflection curves showed the similar tendency and did not change with ageing environments and time. All aged samples showed higher melt flow index values than that of unaged sample and the changes in melt flow index could be an indicator of degradation.


2017 ◽  
Vol 4 (1) ◽  
pp. 36-40
Author(s):  
Naokichi Imai ◽  
Antonio Norio Nakagaito ◽  
Hiroyuki Yano ◽  
Hiroshi Uyama

In this study, a biocomposite consisting of an oil-based network polymer and microfibrillated cellulose (MFC) have been prepared and its mechanical and thermal properties have been evaluated. Epoxidized soybean oil (ESO) was impregnated in a mat of MFC, followed by the acid-catalyzed curing of ESO to produce the biocomposite. SEM observation shows the good dispersion of the cellulose fiber in the oil-based network polymer. The Young's modulus and tensile strength of the biocomposite were much superior to those of the ESO homopolymer and these values increased as a function of the MFC content in the biocomposite. The storage modulus (E’) of the biocomposite in the rubbery region was also larger than that of the ESO homopolymer.


Sign in / Sign up

Export Citation Format

Share Document