Antimicrobial Susceptibility of Subgingival Bacterial Flora in Dogs with Gingivitis

1995 ◽  
Vol 12 (4) ◽  
pp. 150-155 ◽  
Author(s):  
C.E. Harvey ◽  
C. Thornsberry ◽  
B.R. Miller ◽  
F. S. Shofer

The aerobic and anaerobic flora from gingival pockets of 49 dogs with severe gingivitis and periodontitis were cultured. The susceptibility of each isolate to four antimicrobial agents currently approved for veterinary use in the USA (amoxicillin-clavulanic acid; clindamycin; cefadroxil; and enrofloxacin) was determined. Amoxicillin-clavulanic acid (Clavamox® Pfizer Animal Health) had the highest in-vitro susceptibility against all isolates (96%), all aerobes (94%) and all anaerobes (100%) tested. For gram-negative aerobes, enrofloxacin (Baytril®, Bayer Corp.) had the highest in-vitro susceptibility activity. For bacteria associated with treatment of gingivitis, which typically are mixed aerobic/anaerobic and gram-positive/gram-negative organisms, the antimicrobial of choice for clinical use based on these susceptibility tests is amoxicillin-clavulanic acid.

1995 ◽  
Vol 12 (4) ◽  
pp. 157-160 ◽  
Author(s):  
C.E. Harvey ◽  
C. Thornsberry ◽  
B.R. Miller ◽  
F. S. Shofer

The aerobic and anaerobic flora from gingival pockets of 40 cats with established gingivitis were cultured. The susceptibility of each isolate to four antimicrobial agents currently approved for use in cats (amoxicillin-clavulanic acid; clindamycin; cefadroxil; enrofloxacin) was determined. Amoxicillin-clavulanic acid (Clavamox®) had the highest in-vitro susceptibility against all isolates (92%) and all anaerobes (99% [co-equal with clindamycin]) tested; enrofloxacin (Baytril®) had the highest in-vitro susceptibility against all aerobes (90%) tested.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S250-S250
Author(s):  
Kanokporn Mongkolrattanothai ◽  
Leslie Stach ◽  
Regina Orbach

Abstract Background The rise of antimicrobial resistance among gram-negative (GN) pathogens has been dramatic nationally. Delayed initiation of active antimicrobial agents has been associated with poor outcomes. We aimed at evaluating the prevalence and treatment of multi-drug-resistant gram-negative (MDR-GN) bacteremia in our pediatric patients. Methods All episodes of GN bacteremia from 2017–2018 at our institution were retrospectively reviewed. GN defined as MDR in our study were carbapenem-resistant organisms (CRO), extended-spectrum β-lactamase (ESBL) producers, and GN that were resistant to cefepime and ≥2 classes of non-cephalosporin antimicrobial agents. Stenotrophomonas maltophilia was excluded. Ineffective empirical treatment (IET) is defined as an initial antibiotic regimen that is not active against the identified pathogen[s] based on in vitro susceptibility testing results. Results A total of 292 episodes of GN bacteremia were identified and 6 S. maltophilia were excluded. Of these, 29 bacteremic episodes in 26 patients were caused by MDR-GN organisms including 18 ESBL, 7 CRO, 1 ESBL and CRO, 3 non-ESBL/non-CRO cefepime-resistant MDR-GN. None of the CRO had carbapenemase genes detected. However, there was a patient with multiple sites of infection simultaneously with non-NDM CR Acinetobacter bacteremia and NDM-mediated CR-Klebsiella ventriculitis. The annual rate of MDR-GN bacteremia increased from 8% in 2017 to 12% in 2018. Almost half (48%) of episodes were community onset. Among these, all but one had underlying medical conditions with hospital exposure and most patients had central venous devices at the time of infection. 52% (15/29) episodes of MDR-GN bacteremia had IET. Despite IET, 47% (7/15) had negative blood cultures prior to initiation of effective therapy (6 ESBL and 1 P. aeruginosa). Various antibiotic regimens were used for CRO therapy as shown in Table 1. Conclusion In our institution, MDR-GN infection is increasing. As such, empiric meropenem is currently recommended in BMT or neutropenic patients with suspected sepsis. However, empiric meropenem must be used judiciously as its widely use will lead to more selection of MDR pathogens. It is essential to continue monitoring of these MDR-GN to guide appropriate empiric regimens. Disclosures All authors: No reported disclosures.


1999 ◽  
Vol 43 (5) ◽  
pp. 1270-1273 ◽  
Author(s):  
E. Könönen ◽  
A. Kanervo ◽  
K. Salminen ◽  
H. Jousimies-Somer

ABSTRACT Oral Fusobacterium nucleatum populations from 20 young, healthy children were examined for β-lactamase production. Ten children (50%) harbored, altogether, 25 β-lactamase-positiveF. nucleatum isolates that were identified as F. nucleatum subsp. polymorphum, F. nucleatum subsp. nucleatum, and F. nucleatum subsp. vincentii (J. L. Dzink, M. T. Sheenan, and S. S. Socransky, Int. J. Syst. Bacteriol. 40:74–78, 1990). In vitro susceptibility of these β-lactamase-producing and 26 non-β-lactamase-producing F. nucleatum isolates was tested with penicillin G, amoxicillin-clavulanic acid, tetracycline hydrochloride, metronidazole, trovafloxacin, and azithromycin. Except for penicillin G, the antimicrobials exhibited good activity against all F. nucleatum isolates.


2003 ◽  
Vol 47 (8) ◽  
pp. 2615-2618 ◽  
Author(s):  
Conor E. Jamieson ◽  
Peter A. Lambert ◽  
Iain N. Simpson

ABSTRACT Four novel oxapenem compounds (i.e., AM-112, AM-113, AM-114, and AM-115) were investigated for their β-lactamase inhibitory activity against a panel of isolated class A, C, and D enzymes, which included expanded-spectrum β-lactamase enzymes (ESBLs). The oxapenems were potent β-lactamase inhibitors. Activity varied within the group, with AM-113 and AM-114 proving to be the most active compounds. The 50% inhibitory concentrations for these agents were up to 100,000-fold lower than that of clavulanic acid against class C and D enzymes. As a group, the oxapenems were more potent than clavulanic acid against enzymes from all classes. The ability of these compounds to protect ceftazidime from hydrolysis by β-lactamase-producing strains was evaluated by MIC tests that combined ceftazidime and each oxapenem in a 1:1 or 2:1 ratio. The oxapenems markedly reduced the MICs for ceftazidime against class C hyperproducing strains and strains producing TEM- and SHV-derived ESBLs. There was little difference between the activity of 1:1 and 2:1 combinations of ceftazidime and oxapenem. The oxapenems failed to enhance the activity of ceftazidime against derepressed AmpC-producing Pseudomonas aeruginosa strains.


2020 ◽  
Vol 7 (1) ◽  
pp. 10 ◽  
Author(s):  
Josef Bolte ◽  
Yanchao Zhang ◽  
Nicole Wente ◽  
Volker Krömker

The present research study investigated the susceptibility of common mastitis pathogens—obtained from clinical mastitis cases on 58 Northern German dairy farms—to routinely used antimicrobials. The broth microdilution method was used for detecting the Minimal Inhibitory Concentration (MIC) of Streptococcus agalactiae (n = 51), Streptococcus dysgalactiae (n = 54), Streptococcus uberis (n = 50), Staphylococcus aureus (n = 85), non-aureus staphylococci (n = 88), Escherichia coli (n = 54) and Klebsiella species (n = 52). Streptococci and staphylococci were tested against cefquinome, cefoperazone, cephapirin, penicillin, oxacillin, cloxacillin, amoxicillin/clavulanic acid and cefalexin/kanamycin. Besides cefquinome and amoxicillin/clavulanic acid, Gram-negative pathogens were examined for their susceptibility to marbofloxacin and sulfamethoxazole/trimethoprim. The examined S. dysgalactiae isolates exhibited the comparatively lowest MICs. S. uberis and S. agalactiae were inhibited at higher amoxicillin/clavulanic acid and cephapirin concentration levels, whereas S. uberis isolates additionally exhibited elevated cefquinome MICs. Most Gram-positive mastitis pathogens were inhibited at higher cloxacillin than oxacillin concentrations. The MICs of Gram-negative pathogens were higher than previously reported, whereby 7.4%, 5.6% and 11.1% of E. coli isolates had MICs above the highest concentrations tested for cefquinome, marbofloxacin and sulfamethoxazole/trimethoprim, respectively. Individual isolates showed MICs at comparatively higher concentrations, leading to the hypothesis that a certain amount of mastitis pathogens on German dairy farms might be resistant to frequently used antimicrobials.


1992 ◽  
Vol 26 ◽  
pp. 285
Author(s):  
G. Beghi ◽  
A. Gusmitta ◽  
D. Legnani ◽  
N. Pagani ◽  
G. Paizis ◽  
...  

2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S858-S858
Author(s):  
Monica Maria Rojas Rojas ◽  
Catalina López ◽  
Jaime Ruiz ◽  
Jacquleine Pavía ◽  
Jose Oñate ◽  
...  

Abstract Background The Study for Monitoring Antimicrobial Resistance Trends (SMART) is a worldwide initiative to monitor in vitro susceptibility of clinical Gram-negative isolates to several antimicrobial agents. Surveillance initiatives are essential to provide real-world evidence to support local guidelines development. Colombia has participated since 2012 with isolates from complicated intrabdominal infections (cIAI), complicated urinary tract infections (cUTI) and respiratory tract infections (RTI). This study describes resistant patterns of Escherichia coli (Eco), Klebsiella pneumoniae (Kpn) and Pseudomonas aeruginosa (Pae) clinical isolates collected in Colombian hospitals in a 2 years period (2017–2018). Methods Isolates from patients with cIAI, cUTI and RTI were collected. Identification confirmation was done in central laboratory. Minimum inhibitory concentrations (MIC) were performed by broth microdilution and interpreted according to 2018 CLSI guidelines, same criteria for Extended-spectrum β-lactamase (ESBL) classification. The antimicrobial activity was evaluated for aztreonam (ATM), ceftolozane/tazobactam (C/T), ceftazidime (CAZ), colistin (COL), ertapenem (ETP), cefepime (FEP), imipenem (IMP), meropenem (MEM) and piperacillin–tazobactam (TZP). Results During 2017–2018, 1492 isolates were collected. The main organism was Eco (51%) followed by Kpn (29%) and Pae (20%). In vitro susceptibility activity is presented in Table 1. COL, C/T, ETP, MEM and IPM exhibited over 95% susceptibility in Eco. ESBL prevalence was 18% for Eco (53/314) and 22% for Kpn (36/165). COL and C/T were the most active agents against Pae isolates. For Kpn, MIC50/90 values were: MEM (0.12 / 8), C/T (0.5 / 8) and for TZP (8 / > 64), meanwhile for Pae were MEM (0.5 / 32), C/T (0.5 / 32) and for TZP (8 / > 64). Conclusion Continued antimicrobial resistance surveillance initiatives are critical to guide the empiric treatments decision in a multidrug resistance era. This study shows that Ceftolozane/Tazobactam, MEM and COL have the best susceptibility profile against Eco, Kpn and Pae of cIAI, cUTI and RTI cases in Colombia. The C/T susceptibility rates and low MIC distribution provide evidence to support its use as a non-carbapenem therapeutic alternative for Gram-negative infections. Disclosures All authors: No reported disclosures.


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S793-S794
Author(s):  
Meredith Hackel ◽  
Daniel F Sahm ◽  
Michael Dowzicky

Abstract Background Antimicrobial resistance is an increasingly serious threat to global public health. The Antimicrobial Testing Leadership and Surveillance (ATLAS) program has provided reliable, global, regional and local in vitro susceptibility data, including mechanisms of resistance, since 2004. In this analysis, data from the ATLAS program are used to measure the in vitro activity of several key gram-negative/gram-positive agents against major global pathogens. Methods A total of 251,837 gram-negative and 132,363 gram-positive non-duplicate, clinical isolates were collected from multiple infection sources from 743 unique sites in 74 countries during 2012-2018 in the ATLAS program. Identification was confirmed to the species level using MALDI-TOF spectrometry. Only one clinically relevant causative isolate per patient was accepted into the study. MICs were determined by broth microdilution following CLSI guidelines and interpreted using 2020 CLSI breakpoints. Phenotypic ESBL screening and confirmatory testing were performed using the CLSI M100 method. Results The in vitro activities of selected antimicrobial agents are provided in the table below. Based on percent susceptibility, ceftazidime-avibactam, amikacin, tigecycline, meropenem, and ceftolozane-tazobactam were the most active agents against most gram-negative isolates. The CRE rate among Enterobacterales isolates was 3.2%, with tigecycline and ceftazidime-avibactam the most active among this resistant subgroup. Ceftazidime-avibactam, ceftolozane-tazobactam, and amikacin were the most active agents against Pseudomonas aeruginosa. Ceftaroline, linezolid, tigecycline and vancomycin all showed good activity against gram-positive isolates. Table Conclusion Ceftazidime-avibactam, ceftolozane-tazobactam, tigecycline, meropenem, and amikacin all showed good activity against a global collection of Enterobacterales. Ceftaroline, tigecycline, linezolid and vancomycin all exhibited excellent activity against gram-positive isolates. Continued monitoring of susceptibility patterns among common pathogens will provide useful information for determining treatment strategies. Disclosures Daniel F. Sahm, PhD, IHMA (Employee)Pfizer, Inc. (Consultant)Shionogi & Co., Ltd. (Independent Contractor) Michael Dowzicky, MS, M.T. A.S.C.P., Pfizer, Inc. (Employee)


Sign in / Sign up

Export Citation Format

Share Document