Research on the preparation of heat-resistant epoxy resin cured by o-carborane-based diamine

2017 ◽  
Vol 30 (9) ◽  
pp. 1094-1100 ◽  
Author(s):  
Zhao Juan ◽  
Qing Ning ◽  
Jiang Shaohua ◽  
Wu Suping

A novel carborane-containing epoxy resin was prepared via the curing reaction between epoxy resin (E51) and 1,2-bis(4-aminophthalimide)dimethyl-1,2-dicarba-closododecaborane (4-AP CBR). According to the nonisothermal differential scanning calorimetry method and the T-β extrapolation method, the curing temperatures of the 4-AP CBR/E51 system were theoretically determined. The cured carboranyl epoxy resin was analyzed by thermogravimetric analysis (TGA), which revealed that the resin had excellent thermal stability and thermal oxidative stability. The results of TGA indicated that the initial decomposition temperature of the resin was exceeding 400°C and the char yield at 800°C was around 60% both under nitrogen and in air atmosphere.

CONVERTER ◽  
2021 ◽  
pp. 476-481
Author(s):  
Tiantian Feng, Et al.

In this article,polyethersulfone and flourene-coating epoxy resin were utilized tomodify both the toughness and the mechanical properties of traditional epoxy resins. The cure kineticsand the thermal stabilityof the resultedblends were tested by differential scanning calorimetry technology and thermogravimetric analysis, respectively. Additionally, the mechanical properties of resulted thermosets were discussed after tested by Dynamic Thermomechanical Analyzer.When compared to the traditional epoxides, the obtained blends exhibit much better heat resistance, thermal stability and mechanical properties.


2019 ◽  
Author(s):  
Andreas Boelke ◽  
Yulia A. Vlasenko ◽  
Mekhman S. Yusubov ◽  
Boris Nachtsheim ◽  
Pavel Postnikov

<p>The thermal stability of pseudocyclic and cyclic <i>N</i>-heterocycle-stabilized (hydroxy)aryl- and mesityl(aryl)-l<sup>3</sup>-iodanes (NHIs) through thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) is investigated. NHIs bearing <i>N</i>-heterocycles with a high N/C-ratio such as triazoles show among the lowest descomposition temperatures and the highest decomposition energies. A comparison of NHIs with known (pseudo)cyclic benziodoxolones is made and we further correlated their thermal stability with reactivity in a model oxygenation. </p>


2021 ◽  
Vol 287 ◽  
pp. 02014
Author(s):  
Amin Abbasi ◽  
Mohamed Mahmoud Nasef ◽  
Wan Zaireen Nisa Yahya ◽  
Muhammad Moniruzzaman

The conversion of palm oil into a sulfur-based polymer by copolymerization with sulfur powder at its molten state is herein reported. The obtained sulfur-containing polymer was characterized using Fourier transform infrared (FTIR), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) to demonstrate the successful conversion. The disappearance of the peaks related to vinylic groups of oil together with the appearance of a peak representing C-H rocking vibrations in the vicinity of C-S bonds confirmed the copolymerization of sulfur with oil. TGA revealed that the polymers have thermal stability up to 230°C under nitrogen and the polymers leave 10% sulfur-rich ash. DSC proved that a small amount of elemental sulfur remained unreacted in the polymer, which showed amorphous and heavily crosslinked structure resembling thermosets. These copolymers are an environmental-friendly polymeric material promoting the utilization of the abundant sulfur while also adding value to palm oil.


Materials ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 2636
Author(s):  
Tomasz M. Majka ◽  
Oskar Bartyzel ◽  
Konstantinos N. Raftopoulos ◽  
Joanna Pagacz ◽  
Krzysztof Pielichowski

Pyrolysis of the polypropylene/montmorillonite (PP/OMMT) nanocomposites allows for recovery of the filler that can be then re–used to produce PP/pyrolyzed MMT (PMMT) nanostructured composites. In this work, we discuss the thermal properties of PP/PMMT composites investigated by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA). It has been found that effect of PMMT (5 wt. % and 10 wt. %) on matrix thermal stability occurs at temperatures above 300 °C. Addition of 5 wt. % and 10 wt. % of PMMT into polypropylene system gave good stabilization effect, as confirmed by the overall stabilization effect (OSE) values, which increased by 4% and 7%, respectively, compared to the control sample (PP). Interestingly, the presence of 1 wt. % and 3 wt. % of pyrolyzed clay stabilizes the system better than the same concentrations of organoclay added into polypropylene melt. DSC data revealed that pyrolyzed clay has still the same tendency as organoclay to enhance formation of the α and β crystalline PP phases only. The pyrolyzed MMT causes an improvement of the modulus in the glassy as well as rubbery regions, as confirmed by DMA results.


1996 ◽  
Vol 8 (2) ◽  
pp. 301-305
Author(s):  
K D Patel

A novel epoxy resin, namely diglycidyl ether (DGE) of 2,4-dihydroxyacetophenone (i.e. resacetophenone, RAP) was prepared and characterized. The curing of DGE–RAP by various diamines was studied kinetically by differential scanning calorimetry (DSC). The cured neat products have been characterized by IR spectral studies and thermogravimetric analysis (TGA). The glass-reinforced composites based on such a novel epoxy resin–diamine system have also been prepared and characterized.


1992 ◽  
Vol 4 (2) ◽  
pp. 67-71
Author(s):  
N. R. Patel ◽  
N. Z. Patel ◽  
R. M. Patel

Unsaturated polyamides were prepared by condensing /3(4-ethoxyphenyl) glutaconic acid with various aromatic diamines. The polycondensates were characterized by IR spectroscopy, vapor phase osmometry, thermogravimetric analysis, differential scanning calorimetry and elemental analysis. All resins were found to decompose in the range '-210-600 °C. The kinetics of decomposition were studied. The results indicated that the resins possess reasonably good thermal stability.


2019 ◽  
Vol 15 ◽  
pp. 2311-2318 ◽  
Author(s):  
Andreas Boelke ◽  
Yulia A Vlasenko ◽  
Mekhman S Yusubov ◽  
Boris J Nachtsheim ◽  
Pavel S Postnikov

The thermal stability of pseudocyclic and cyclic N-heterocycle-stabilized (hydroxy)aryl- and mesityl(aryl)-λ3-iodanes (NHIs) through thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) is investigated. Peak decomposition temperatures (T peak) were observed within a wide range between 120 and 270 °C. Decomposition enthalpies (ΔH dec) varied from −29.81 to 141.13 kJ/mol. A direct comparison between pseudocyclic and cyclic NHIs revealed high T peak but also higher ΔH dec values for the latter ones. NHIs bearing N-heterocycles with a high N/C-ratio such as triazoles show among the lowest T peak and the highest ΔH dec values. A comparison of NHIs with known (pseudo)cyclic benziodoxolones is made and we further correlated their thermal stability with reactivity in a model oxygenation.


2013 ◽  
Vol 807-809 ◽  
pp. 2826-2830 ◽  
Author(s):  
Xue Juan Yang ◽  
Shou Hai Li ◽  
Xiao Dong Tang ◽  
Jian Ling Xia

Myrcene-based vinyl ester resin (VER) monomer was prepared via simple Diels-Alder reaction and ring-opening esterification. The molecular structure and UV curing behaviors of prepared VER monomer were characterized using FTIR analysis method. Moreover, the mechanical properties, thermal stability and hardness of its UV cured product were also investigated. FTIR analysis results demonstrated that the target myrcene-based VER monomer has been successfully synthesized. UV curing behaviors analysis showed that prepared myrcene-based VER monomer could reach ultimate cured level within 50 s. Physical properties study showed that the UV cured product has certain tensile, flexural, impact resistance properties and high hardness. TGA indicated the UV cured product had excellent thermal stability, as it showed high thermal initial decomposition temperature at 359.6 °C .


e-Polymers ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 500-509
Author(s):  
Dayong Zhang ◽  
Xiaohui Liu ◽  
Xuefeng Bai ◽  
Yinyin Zhang ◽  
Gang Wang ◽  
...  

AbstractA new type of phthalonitrile-etherified resole resin (PNR) was synthesized from resole resin and 4-nitrophthalonitrile. The differential scanning calorimetry results showed that the curing temperature of PNR is lower than that of phthalonitrile resin. Excellent thermal stability and bonding properties were obtained after curing at 220°C. TGA showed that in air, the temperature of 5% weight loss (T5%) of the cured PNR was 446°C, approximately 41°C higher than that of resole resin (RS), and the char yield at 800°C increased from 4% for RS to 33% for PNR. The shear strengths of PNR at room temperature and high temperature were increased by 8% and 133%, respectively, over those of RS, and after aging at 350°C for 2 h, these values were increased by 262% and 198%, respectively, over those of RS. Its excellent curing behavior, heat resistance and high bonding strength show that PNR can be used as a high temperature-resistant adhesive.


Sign in / Sign up

Export Citation Format

Share Document