Advanced development of dairy farm waste-based biocarbon-reinforced unsymmetrical structured biophenols polybenzoxazine composites

2020 ◽  
pp. 095400832094157
Author(s):  
V Selvaraj ◽  
TR Raghavarshini ◽  
M Alagar

In the present work, an attempt has been made to develop cow manure carbon-reinforced hybrid biophenol-based benzoxazine composites for antifouling coating applications. Bio-based benzoxazine with unsymmetrical molecular structure was synthesized using the mixture of a combination of cardanol and eugenol with diaminodiphenyl methane and paraformaldehyde, and the hybrid-benzoxazine obtained was characterized using different analytical techniques, viz., Fourier transform infrared, nuclear magnetic resonance and MALDI mass. Bio-based benzoxazine was further reinforced with varying weight percentages (1, 3 and 5 wt%) of biocarbon derived from cow manure to obtain hybrid composite coatings. The hybrid benzoxazine matrix and composites were studied for their thermal behaviour, contact angle (CA), morphology, corrosion-resistant behaviour and antifouling character to utilize them as coatings materials for different industrial applications. Results obtained from different studies inferred that the biocarbon-reinforced composites possess an enhanced value of glass transition temperature (249°C), high char yield (38.4%), improved CA (105.6°), higher efficiency of corrosion protection against mild steel surface (98%) and improved antimicrobial activity.

Author(s):  
João Marcos Pereira Galúcio ◽  
Sorrel Godinho Barbosa de Souza ◽  
Arthur Abinader Vasconcelos ◽  
Alan Kelbis Oliveira Lima ◽  
Kauê Santana da Costa ◽  
...  

: Nanotechnology is a cutting-edge area with numerous industrial applications. Nanoparticles are structures that have dimensions ranging from 1–100 nm which exhibit significantly different mechanical, optical, electrical, and chemical properties when compared with their larger counterparts. Synthetic routes that use natural sources, such as plant extracts, honey, and microorganisms are environmentally friendly and low-cost methods that can be used to obtain nanoparticles. These methods of synthesis generate products that are more stable and less toxic than those obtained using conventional methods. Nanoparticles formed by titanium dioxide, zinc oxide, silver, gold, and copper, as well as cellulose nanocrystals are among the nanostructures obtained by green synthesis that have shown interesting applications in several technological industries. Several analytical techniques have also been used to analyze the size, morphology, hydrodynamics, diameter, and chemical functional groups involved in the stabilization of the nanoparticles as well as to quantify and evaluate their formation. Despite their pharmaceutical, biotechnological, cosmetic, and food applications, studies have detected their harmful effects on human health and the environment; and thus, caution must be taken in uses involving living organisms. The present review aims to present an overview of the applications, the structural properties, and the green synthesis methods that are used to obtain nanoparticles, and special attention is given to those obtained from metal ions. The review also presents the analytical methods used to analyze, quantify, and characterize these nanostructures.


2021 ◽  
pp. 1-34
Author(s):  
Peter Renner ◽  
Swarn Jha ◽  
Yan Chen ◽  
Tariq Chagouri ◽  
Serge Kazadi ◽  
...  

Abstract Effective design of corrosion-resistant coatings is critical for the protection of metals and alloys. Many state-of-the-art corrosion-resistant coatings are unable to satisfy the challenges in extreme environments for tribological applications, such as elevated or cryogenic temperatures, high mechanical loads and impacts, severe wear, chemical attack, or a combination of these. The nature of challenging conditions demands that coatings have high corrosion and wear resistance, sustained friction control, and maintain surface integrity. In this research, multi-performance metal-ceramic composite coatings were developed for applications in harsh environments. These coatings were developed with an easy to fabricate, low-cost, and safe procedure. The coating consisted of boron nitride, graphite, silicon carbide, and transition metals such as chromium or nickel using epoxy as vehicle and bonding agent. Salt spray corrosion tests showed that 1010 carbon steel (1/4 hard temper) substrates lost 20-100× more mass than the coatings. The potentiodynamic polarization study showed better performance of the coatings by seven orders of magnitude in terms of corrosion relative to the substrate. Additionally, the corrosion rates of the coatings with Ni as an additive were five orders of magnitude lower than reported. The coefficient of friction of coatings was as low as 0.1, five to six times lower than that of epoxy and lower than a wide range of epoxy resin-based coatings found in literature. Coatings developed here exhibited potential in applications in challenging environments for tribological applications.


Coatings ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 390 ◽  
Author(s):  
Qian Zhao ◽  
Tiantian Tang ◽  
Fang Wang

The development of a self-cleaning and corrosion resistant superhydrophobic coating for aluminum alloy surfaces that is durable in aggressive conditions has attracted great interest in materials science. In the present study, a superphydrophobic film was fabricated on an AA5052 aluminum alloy surface by the electrodeposition of Ni–Co alloy coating, followed by modification with 6-(N-allyl-1,1,2,2-tetrahydro-perfluorodecyl) amino-1,3,5-triazine-2,4-dithiol monosodium (AF17N). The surface morphology and characteristics of the composite coatings were investigated by means of scanning electron microscopy (SEM), energy dispersive X-ray spectrum (EDS), atomic force microscope (AFM) and contact angle (CA). The corrosion resistance of the coatings was assessed by electrochemical tests. The results showed that the surface exhibited excellent superhydrophobicity and self-cleaning performance with a contact angle maintained at 160° after exposed to the atmosphere for 240 days. Moreover, the superhydrophobic coatings significantly improved the corrosion resistant performance of AA5052 aluminum alloy substrate in 3.5 wt.% NaCl solution.


2008 ◽  
Vol 368-372 ◽  
pp. 1194-1197 ◽  
Author(s):  
Chen Ma ◽  
Ying Hui Wang ◽  
Mu Qin Li ◽  
Li Jie Qu

Rare earth/calcium phosphate composite coatings were fabricated on the surface of Ti-6Al-4V by micro-arc oxidation (MAO) technique. The wear properties and corrosion resistant of rare earth/ calcium phosphate composite coatings in the simulated body fluid (SBF) have been investigated and the bioactivity of the composite coatings were evaluated. The results show that the friction coefficient of the composite coatings in the SBF is only 0.15~0.18 and the anode polarization potential of the coating has been obviously enhanced about 0.18V compared with that of coatings of calcium phosphate coatings. So the composite coatings have excellent wear and corrosion resistant properties. XRD analysis indicates that the composite coatings can induce hydroxyapatite to form on its surface after soaked in SBF for 9d, which shows that the composite coatings own good bioactivity.


2020 ◽  
Vol 318 ◽  
pp. 01040
Author(s):  
Dimitrios I. Zagkliveris ◽  
Azarias Mavropoulos ◽  
Efstathios Ntovinos ◽  
Georgios K. Triantafyllidis

A large variety of protective coating is being used in industrial applications to improve the resistance of the metallic substrates against corrosion. The pack-cementation method for boronizing and borochromizing is effective to produce extremely hard and corrosion resistant thick coatings and, additionally, is a low-cost and simple technique. In the present study, AISI 4140 steel specimens underwent boronizing and afterwards chromizing by the pack-cementation method using B4C as boron source and Fe-Cr as chromium source, respectively. In both treatments the appropriate activators were used. After chromizing the boronized substrate, a mixed boride phase FeCrB was formed, as it was confirmed by X-ray Diffractometry (XRD). The boronized and the borochromized specimens were subjected to Electrochemical Impedance Spectroscopy (EIS). From the analysis of the frequency response of the coating systems (Bode and Nyquist display), the conclusion that the borochromized specimens were significantly more corrosion resistant was extracted. Finally, data of optical and electron microscopy contribute to the validity of the conclusions.


2020 ◽  
Vol 20 (10) ◽  
pp. 6389-6395 ◽  
Author(s):  
Chuan-Chun Li ◽  
Tang-Yu Lai ◽  
Te-Hua Fang

In this study, corrosion-resistant composite coatings were produced by incorporating zinc (Zn) nanoparticles in an epoxy resin and a hybrid silicone resin. While performing sodium chloride saltspray tests, the corrosion performance of the nano-composite coatings was evaluated by applying these corrosion-resistant composite coatings on a carbon steel substrate. The nano-composite coatings on the substrates were characterized by an adhesion test, scanning electron microscope (SEM), and transmission electron microscope (TEM) with energy-dispersive X-ray spectroscopy (EDX). The results of the salt-spray tests showed that the Zn nanoparticles in the epoxy and hybrid silicone resins could react with permeated oxygen, thereby improving the anticorrosion properties of the Zn nano-composites. The corroded area of the epoxy resin samples decreased from more than 80% without Zn doping to less than 5% in a 3000-ppm Zn-doped sample after a 500-h saltspray test. An evaluation of the bactericidal properties showed that the Zn/epoxy and Zn/hybrid silicone resin nano-composites with at least 360 ppm of Zn nanoparticles exhibited bactericidal ability, which remarkably increased with the Zn nanoparticles content. The corrosion-resistant properties improved with the addition of Zn nano-composites coatings.


Coatings ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 505
Author(s):  
Xinqiang Lu ◽  
Shouren Wang ◽  
Tianying Xiong ◽  
Daosheng Wen ◽  
Gaoqi Wang ◽  
...  

Two composite coatings, Zn65Al15Mg5ZnO15 and Zn45Al35Mg5ZnO15, were prepared by the cold spray technique and were found to be compact, with no pits or cracks, based on scanning electron microscope (SEM) and energy-dispersive X-ray spectroscopy (EDS) investigations. The results of the neutral salt spray (NSS) and electrochemical tests showed that the two composite coatings possess a suitable corrosion performance. However, the Zn45Al35Mg5ZnO15 composite coatings were more corrosion resistant and allowed a better long-term stability. In addition, they were found to exhibit the best wear resistance and photocatalytic degradation efficiency.


Sign in / Sign up

Export Citation Format

Share Document