Influence of resin curing cycle on the deformation of filament wound composites by in situ strain monitoring

2021 ◽  
pp. 095400832110263
Author(s):  
Xiaodong Chen ◽  
Yong Li ◽  
Dajun Huan ◽  
Wuqiang Wang ◽  
Yang Jiao

The residual stress of metal liners wrapped by composite materials has a significant influence on the service performance of rotating parts, such as flywheel rotors and motor jackets. However, the deformation of the liners, the flow of resins, and the temperature variation during the winding process make it difficult to predict and control this residual stress. In this paper, the process-induced strains were monitored online by a strain gauge with the help of a wireless strain meter. The evolution of this strain during the manufacturing process was fully discussed. A rapid curing resin system was used and its curing properties were tested by differential scanning calorimetry. The mechanical properties of the resin matrix and its composite were characterized. The effect of the curing cycle on the evolution of the residual strain was discussed in detail through comparative experiments. The experimental results show that the use of infrared radiation has a significant advantage regarding residual stress accumulation. This advantage is greater when carbon fiber is used than when glass fiber is used. The prestress in composites of glass fiber and carbon fiber increases by 5.9% and 41.7%, respectively, after cooling.

2020 ◽  
pp. 096739112096510
Author(s):  
Pan Wang ◽  
Qing Lin ◽  
Yaming Wang ◽  
Chuntai Liu ◽  
Changyu Shen

This work aims to perform a systematic investigation on the crystallization behavior and morphologies of carbon and glass fiber reinforced PEEK. The nonisothermal and isothermal crystallization behavior was investigated by differential scanning calorimetry (DSC). The resultant morphologies were assessed by wide angle X-ray diffraction (WAXD), small angle X-ray scattering (SAXS), and polarized optical microscopy (POM) to provide details on spherulitic level, crystalline structure at unit cell, and lamellar levels. It was found that the crystallization ability of carbon fiber filled PEEK was better than that of neat PEEK, while the behavior of glass fiber filled PEEK was in an opposite trend. The incorporation of carbon fiber (or glass fiber) led to a looser packing of the unit cell or a less crystal perfection of PEEK but did not change its crystal form as well as its long period of lamellae. The isothermal crystallization kinetics was analyzed by the Avrami model, suggesting that the crystallization mechanism of carbon fiber filled PEEK was different from that of neat PEEK and its glass fiber filled composites. Nevertheless, the POM results showed that fiber-induced transcrystallization in PEEK matrix was not evidenced for either carbon or glass fiber filled PEEK. Finally, the effect of carbon and glass fiber on the crystallization of PEEK matrix was discussed to some extent.


2020 ◽  
Vol 70 (1) ◽  
pp. 36-46
Author(s):  
Jovan Radulović

In this paper a tensile characteristics of filament-wound glass fiber-aramid fiber/epoxy resins hybrid composites and glass fiber-two carbons fibers/epoxy resins hybrid composites are presented. Basic terms about hybride composite materials (origin, reasons for manufacturing, advantages, definitions, levels of hybridization, modes of classifications, types, categorization, and possible interactions between constituents) and used reinforcements and matrices are described. For a manufacturing of NOL rings four reinforcements (glass fiber, polyamide aromatic fiber and two carbon fibers) and two matrices (high and moderate temperature curing epoxy resin system) are used. Based on experimentally obtained results, it is concluded that hybride composite material consisting of carbon fiber T800 (67 % vol) and glass fiber GR600 (33 % vol) impregnated with epoxy resin system L20 has the highest both the tensile strength value and the specific tensile strength value. The two lowest values of both tensile strength and the specific tensile strength have hybrid material containing aramide fiber K49 (33 % vol) and glass fiber GR600 (67 % vol) and epoxy resin system 0164 and hybrid NOL ring with wound carbon fiber T300 (33 % vol) and glass fiber GR600 (67 % vol) impregnated with the same epoxy resin system. This investigation pointed out that increasing the volume content of aramide fiberK49, carbon fiber T300 and carbon fiber T800 in appropriate hybrid composites with glass fiber GR600 increases both the tensile strength value and the specific tensile strength value and decrease the density value, no matter the used epoxy resin system.


RSC Advances ◽  
2015 ◽  
Vol 5 (32) ◽  
pp. 25208-25214 ◽  
Author(s):  
Qingjie Zhang ◽  
Shengbiao Liang ◽  
Gang Sui ◽  
Xiaoping Yang

High modulus resin matrix is proposed to be an essential prerequisite to carbon fiber filament wound composites with excellent mechanical and interfacial properties.


2000 ◽  
Vol 34 (13) ◽  
pp. 1216-1239
Author(s):  
JEFF M. GANLEY ◽  
ARUP K. MAJI ◽  
STEVEN HUYBRECHTS

Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 18
Author(s):  
Takahiro Wada ◽  
Hiroshi Churei ◽  
Mako Yokose ◽  
Naohiko Iwasaki ◽  
Hidekazu Takahashi ◽  
...  

Face guards (FGs) are protectors that allow for the rapid and safe return of athletes who are to play after sustaining traumatic facial injuries and orbital fractures. Current FGs require significant thickness to achieve sufficient shock absorption abilities. However, their weight and thickness render the FGs uncomfortable and reduce the field of vision of the athlete, thus hindering their performance. Therefore, thin and lightweight FGs are required. We fabricated FGs using commercial glass fiber-reinforced thermoplastic (GFRTP) and carbon fiber-reinforced thermoplastic (CFRTP) resins to achieve these requirements and investigated their shock absorption abilities through impact testing. The results showed that an FG composed of CFRTP is thinner and lighter than a conventional FG and has sufficient shock absorption ability. The fabrication method of an FG comprising CFRTP is similar to the conventional method. FGs composed of commercial FRTPs exhibit adequate shock absorption abilities and are thinner and lower in weight as compared to conventional FGs.


Sign in / Sign up

Export Citation Format

Share Document