Performance analysis and experiment of new 3D rotary compressor

Author(s):  
S Lee ◽  
C Bai ◽  
J Shim

R410A is one of the HFC refrigerants, which are preferred globally to promote the most environmentally friendly option on the basis of an objective reference system taking into account the alternative selection of HCFC refrigerants for the air-conditioning system by the Kyoto protocol. This article presents a three-dimensional (3D) rotary compressor that is within the family of rotary compressors. First, the geometry of the compressor is explained and equations relating the volume of the compression and suction chambers to the rotational angle of the shaft are derived. These equations are used within a model that predicts the mass flow rate, power consumption, and cooling capacity of the compressor. The model includes energy and mass balances within the compression chambers, as well as the estimation of leakage, frictional, and electrical losses. The primary sources of energy and flow losses are identified for this type of compressor. The results presented were generated using refrigerant R410A as the working fluid based on the properties of the ‘Ref-prop 7.0’ program provided by NIST. Due to the two compression chambers vertically separated in one cylinder, this 3D rotary compressor has the best vibration characteristic and the smallest torque variation among the conventional-type compressors.

2018 ◽  
Vol 197 ◽  
pp. 08013
Author(s):  
Enang Suma Arifianto ◽  
Ega Taqwali Berman ◽  
Mutaufiq Mutaufiq

The purpose of this research is to know the improvement of car air conditioner system performance using an ejector. The study was conducted on a car engine with power 100 PS (74 kW) @ 5000 rpm. The test procedure is carried out under two conditions: the normal refrigeration cycle mode and the refrigeration cycle mode with the ejector. The working fluid used in the refrigeration cycle is R-134a. Performance data was measured on engine revolutions ranging from 1500 - 3000 rpm. Finally, the results showed that ejector usage on AC system generates an increase in the refrigeration effect and coefficient of performance (COP) of 25% and 22%, respectively. This has implications to better cooling capacity and compressor work that is lighter.


A numerical investigation into determining the thermal and ventilation capability of wind towers integrated with the heat pipe technology was carried out in this work. The water-charged copper heat pipes were systematically arranged in a horizontal orientation and integrated inside a modern roof-mounted wind tower. Water was used as the working fluid instead of synthetic refrigerants in order to make the system carbon-neutral alongside maintaining the indoor air quality of the built environment. The three-dimensional Reynolds-Averaged Navier-Stokes (RANS) equations along with the momentum, continuity and energy equations were solved using the commercial Computational Fluid Dynamics (CFD) ANSYS code for velocity and pressure field simulations. Using the inlet wind speeds ranging from 1m/s to 5m/s, the results of the study showed that the proposed cooling system was capable of meeting the regulatory fresh air intake requirements per occupant of 10L/s. In addition, the findings determined that a passive cooling capacity of up to 11K was achievable when the system was subjected to inlet temperatures of 310K or 37°C. The work characterised the sustainable operation of wind tower in delivering energy-free ventilative cooling in regions encompassing hot and dry climatic conditions. The technology presented in this work is currently under an Intellectual Property (IP) protection (GB1321709.6).


2018 ◽  
Vol 197 ◽  
pp. 08002
Author(s):  
Kasni Sumeru ◽  
Triaji Pangripto Pramudantoro ◽  
Andriyanto Setyawan

The experimental investigation of subcooling effects on system COP was carried out on a residential air conditioning using R410A as working fluid, with a compressor capacity of about 0.75 kW. In the experiment, the indoor and outdoor temperatures were controlled at 24°C and 32°C. The results showed that the use of condensate water lowers the refrigerant temperature in the condenser outlet by 2.7°C. By lowering the refrigerant temperature, the cooling capacity of the air conditioning can be enhanced. The decrease in of refrigerant temperature results in COP improvement 16.4%. Besides increasing the COP, the condensate water also decreases the discharge compressor temperature by 7.6°C. The decrease in of the discharge compressor temperature resulted in the decrease in power consumption of the air conditioning system by 5.9%.


Author(s):  
Wen-Juan Deng ◽  
Ying-li Zhang ◽  
Zhi-Peng Zhu ◽  
Xiang-Ji Yue ◽  
De-Chun Ba ◽  
...  

To predict the performance of a rotary compressor and study the dynamic coupling characteristics of the valve, a three-dimensional dynamic model of the compressor is constructed in this paper. The model adopts the fluid–solid interaction method and the dynamic grid technique to achieve coupled reed valve motion. Meanwhile, to solve the problem of grid deformation caused by large deformation of the valve plate, a user-defined dynamic grid method is used to realize grid updating in the deformed area based on computational fluid dynamics method and the ideas of spring smoothing method. The model is validated with a cooling capacity error of 6.07% and an indicated power error of 2%. The stress, the displacement, the velocity and the pressure of the valve is analyzed. The flow characteristics and the dynamic characteristics of the valve plate obtained provide a reference for the design of the compressor.


Author(s):  
CP Jawahar

This paper presents the energy analysis of a triple effect absorption compression (hybrid) cycle employing ammonia water as working fluid. The performance parameters such as cooling capacity and coefficient of performance of the hybrid cycle is analyzed by varying the temperature of evaporator from −10 °C to 10 °C, absorber and condenser temperatures in first stage from 25 °C to 45 °C, degassing width in both the stages from 0.02 to 0.12 and is compared with the conventional triple effect absorption cycle. The results of the analysis show that the maximum cooling capacity attained in the hybrid cycle is 472.3 kW, at 10 °C evaporator temperature and first stage degassing width of 0.12. The coefficient of performance of the hybrid cycle is about 30 to 65% more than the coefficient of performance of conventional triple effect cycle.


Author(s):  
Yilin Du ◽  
Jan Muehlbauer ◽  
Jiazhen Ling ◽  
Vikrant Aute ◽  
Yunho Hwang ◽  
...  

A rechargeable personal air-conditioning (RPAC) device was developed to provide an improved thermal comfort level for individuals in inadequately cooled environments. This device is a battery powered air-conditioning system with the phase change material (PCM) for heat storage. The condenser heat is stored in the PCM during the cooling operation and is discharged while the battery is charged by using the vapor compression cycle as a thermosiphon loop. The conditioned air is discharged towards a single person through adjustable nozzle. The main focus of the current research was on the development of the cooling system. A 100 W cooling capacity prototype was designed, built, and tested. The cooling capacity of the vapor compression cycle measured was 165.6 W. The PCM was recharged in nearly 8 hours under thermosiphon mode. When this device is used in the controlled built environment, the thermostat setting can be increased so that building air conditioning energy can be saved by about 5–10%.


1992 ◽  
Vol 13 (9) ◽  
pp. 334-342
Author(s):  
John H. DiLiberti ◽  
Mark A. Greenstein ◽  
Sally Shulman Rosengren

The enormous progress witnessed in the field of prenatal diagnosis during the past two decades is likely to continue into the future. Improved imaging techniques are likely to enhance the resolution of noninvasively obtained fetal images considerably over their current excellent quality. Although this undoubtedly will be true for ultrasonography, the increased speed of magnetic resonance equipment may offer a new realm of imaging possibilities. Computerized image processing, analysis, and three-dimensional reconstructions all should make interpretation of fetal images easier and more understandable to the nonspecialist. Advances in molecular genetics will continue to accelerate, greatly expanding the range and accuracy of prenatal diagnosis. The alert pediatrician who is sensitive to genetic issues may, by early detection of pediatric disorders and careful family history assessment, be in a position to identify families at risk for serious genetic conditions and provide the opportunity to make informed decisions on reproductive options that avert a major tragedy. The pediatrician, working with obstetric colleagues, should be part of a team effort to support families going through prenatal testing. Familiarity with these rapidly changing technologies will make it far easier to support the family needing additional explanation about prenatal diagnosis issues.


Author(s):  
Y.I. Babenkov ◽  
◽  
A.I. Ozersky ◽  
V.V. Romanov ◽  
G.A Galka ◽  
...  

The article is devoted to the issue of designing an air conditioning system (SСA) of the cabin of an agricultural machine to create comfortable conditions and ensure good health of the driver. The methodology for determining heat inflows and moisture inflows into the cabin is shown. The required cooling capacity of hard currency is calculated using the i-d diagram.


2018 ◽  
Vol 21 (8) ◽  
pp. 1286-1297 ◽  
Author(s):  
Antonio Gil ◽  
Andrés Omar Tiseira ◽  
Luis Miguel García-Cuevas ◽  
Tatiana Rodríguez Usaquén ◽  
Guillaume Mijotte

Each of the elements that make up the turbocharger has been gradually improved. In order to ensure that the system does not experience any mechanical failures or loss of efficiency, it is important to study which engine-operating conditions could produce the highest failing rate. Common failing conditions in turbochargers are mostly achieved due to oil contamination and high temperatures in the bearing system. Thermal management becomes increasingly important for the required engine performance. Therefore, it has become necessary to have accurate temperature and heat transfer models. Most thermal design and analysis codes need data for validation; often the data available fall outside the range of conditions the engine experiences in reality leading to the need to interpolate and extrapolate disproportionately. This article presents a fast three-dimensional heat transfer model for computing internal temperatures in the central housing for non-water cooled turbochargers and its direct validation with experimental data at different engine-operating conditions of speed and load. The presented model allows a detailed study of the temperature rise of the central housing, lubrication channels, and maximum level of temperature at different points of the bearing system of an automotive turbocharger. It will let to evaluate thermal damage done to the system itself and influences on the working fluid temperatures, which leads to oil coke formation that can affect the performance of the engine. Thermal heat transfer properties obtained from this model can be used to feed and improve a radial lumped model of heat transfer that predicts only local internal temperatures. Model validation is illustrated, and finally, the main results are discussed.


Sign in / Sign up

Export Citation Format

Share Document