scholarly journals Prediction of the dynamic response of a plate treated by particle impact damper

Author(s):  
Moez Trigui ◽  
Emmanuel Foltete ◽  
Noureddine Bouhaddi

In this paper, an experimental characterisation of a particle impact damper (PID) under periodic excitation is investigated. The developed method allows the measurement of damping properties of PID without the supplementary use of a primary structure. The passive damping of PID varies with the excitation frequency and its design parameters. The nonlinear damping of PID is then interpreted as an equivalent viscous damping to be introduced in a finite element model of a structure to predict its dynamic response. The results of numerical simulations are in good agreement with those of experiment and show the relevance of the developed method to predict the dynamic behaviour of a structure treated by PID’s.

Author(s):  
Riadh Chaari ◽  
Fathi Djemal ◽  
Fakher Chaari ◽  
Mohamed Slim Abbes ◽  
Mohamed Haddar

Impact dampers are efficient in many industrial applications with a wide range of frequencies. An experimental analysis of the impact damping of spherical balls is investigated to simplify the particle impact damping design and improve the vibration suppression. The objective of the study is to analyze some of the design parameters of impact damper using spherical balls. The experimental investigation consists to test the effect of the ball size for each mass level, the number of balls for each size level and different exciting force levels on vibrations of the main structure. The parametric study provided useful information to understand and optimize Particle Impact Damping design.


Author(s):  
Hamid R. Hamidzadeh

The particle impact damper is an effective vibration damping treatment that can be used in the cases where visco-elastic constrained layer damping fails due to excessive surrounding temperature. In this type of passive damping, particles move in a container attached to the vibrating system resulting in plastic impact with the container. In the presented theoretical study, the damping characteristics of free oscillation for a vertical system with an initial displacement are considered and a governing equation for the system under free vibration with a particle damper is derived. To evaluate the damping characteristics for the free vibrating system, the equivalent damping ratio is determined by considering both kinematics and kinetics of the particle motion and its impacts with the container. The presented solution concludes that in general damping effectiveness can be enhanced by increasing the mass of the particle in comparison with total mass of the system. Mathematical optimum clearance for the moving particle and the equivalent viscous damping ratio are determined for the best performance of the particle impact damper.


1973 ◽  
Vol 51 (20) ◽  
pp. 2175-2183 ◽  
Author(s):  
F. L. Curzon ◽  
M. G. R. Phillips

The amplitude of a standing wave on shallow water has been observed as a function of the excitation frequency (ω) in conditions where nonlinear effects are important. It is found that the peak of the normal resonance curve is flattened, due to extra damping caused by resonant, nonlinear generation of a wave having an oscillation frequency of 2ω. The experimental observations are in good agreement with the theoretical model presented in the paper.


Author(s):  
I. Korkmaz ◽  
J. J. Barrau ◽  
M. Berthillier ◽  
S. Creze

Abstract The dynamic behavior of a cantilever beam damped by dry friction has been studied The beam is represented partly by its effective modal parameters, obtained from a finite element model. The Coulomb friction law is used and a temporal integration of the dynamic response is performed. A detailed parametric study, highlighting the influence of the static and the dynamic friction coefficients, the viscous damping coefficient, the contact stiffness and the position of the damper along the span, on the dynamic response has been conducted. A better understanding of the damping mechanism by dry friction has been obtained. The numerical results have been compared to experimental results, and a good agreement was found. The results could be applied to a turbine blade with a blade to ground damper.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Yong-Zheng Jiang ◽  
Kuan-Fang He ◽  
Yong-Le Dong ◽  
Da-lian Yang ◽  
Wei Sun

The dynamic response of the vibrating screen has a great impact on the screening efficiency and fatigue life of the structures. For the conventional dynamic design, the consideration of the influence of load weight on dynamic response is lacking. So, in this paper, taking a very common vibrating screen used in tunnel construction as an example, the relationship between the screen dynamic response and the load weight is studied through numerical simulations. Firstly, to make sure the accuracy of simulation, the three-dimensional finite element model of a vibration screen is strictly built to maximize consistency with the real screen, and then the simulated results are validated by experiments. Furthermore, the variation regularity of dynamic response with the load weight and excitation frequency is analyzed based on simulations. Results show the load weight has obvious influence on the modal shapes as well as the natural frequencies. There are three regions that will lead to the sudden increase of vibration acceleration: (1) the load weight variates within 0–50 kg and excitation frequency variates within 40–60 Hz; (2) the load weight variates within 10–100 kg and excitation frequency variates within 50–90 Hz; (3) the load weight variates within 80–200 kg and excitation frequency variates within 70–100 Hz. These results will provide new theoretical reference for the maintenance and further improvement in the dynamic design of the vibrating screen.


2019 ◽  
Vol 3 (Special Issue on First SACEE'19) ◽  
pp. 173-180
Author(s):  
Giorgia Di Gangi ◽  
Giorgio Monti ◽  
Giuseppe Quaranta ◽  
Marco Vailati ◽  
Cristoforo Demartino

The seismic performance of timber light-frame shear walls is investigated in this paper with a focus on energy dissipation and ductility ensured by sheathing-to-framing connections. An original parametric finite element model has been developed in order to perform sensitivity analyses. The model considers the design variables affecting the racking load-carrying capacity of the wall. These variables include aspect ratio (height-to-width ratio), fastener spacing, number of vertical studs and framing elements cross-section size. A failure criterion has been defined based on the observation of both the global behaviour of the wall and local behaviour of fasteners in order to identify the ultimate displacement of the wall. The equivalent viscous damping has been numerically assessed by estimating the damping factor which is in use in the capacity spectrum method. Finally, an in-depth analysis of the results obtained from the sensitivity analyses led to the development of a simplified analytical procedure which is able to predict the capacity curve of a timber light-frame shear wall.


2020 ◽  
Vol 14 ◽  
Author(s):  
Osama Bedair

Background: Modular steel buildings (MSB) are extensively used in petrochemical plants and refineries. Limited guidelines are available in the industry for analysis and design of (MSB) subject to accidental vapor cloud explosions (VCEs). Objectives: The paper presents simplified engineering model for modular steel buildings (MSB) subject to accidental vapor cloud explosions (VCEs) that are extensively used in petrochemical plants and refineries. Method: A Single degree of freedom (SDOF) dynamic model is utilized to simulate the dynamic response of primary building components. Analytical expressions are then provided to compute the dynamic load factors (DLF) for critical building elements. Recommended foundation systems are also proposed to install the modular building with minimum cost. Results: Numerical results are presented to illustrate the dynamic response of (MSB) subject to blast loading. It is shown that (DLF)=1.6 is attained at (td/t)=0.4 for front wall (W1) with (td/T)=1.25. For side walls (DLF)=1.41 and is attained at (td/t)=0.6. Conclusions: The paper presented simplified tools for analysis and design of (MSB) subject accidental vapor cloud blast explosions (VCEs). The analytical expressions can be utilized by practitioners to compute the (MSB) response and identify the design parameters. They are simple to use compared to Finite Element Analysis.


Author(s):  
Fatih Güven

Gears are commonly used in transmission systems to adjust velocity and torque. An integral gear or an interference fit could be used in a gearbox. Integral gears are mostly preferred as driving gear for a compact design to reduce the weight of the system. Interference fit makes the replacement of damaged gear possible and re-use of the shaft compared to the integral shaft. However, internal pressure occurs between mating surfaces of the components mated. This internal pressure affects the stress distribution at the root and bottom land of the gear. In this case, gear parameters should be re-considered to assure gear life while reducing the size of the gear. In this study, interference fitted gear-shaft assembly was examined numerically. The effects of rim thickness, profile shifting, module and fit tolerance on bending stress occurring at the root of the gear were investigated to optimize gear design parameters. Finite element models were in good agreement with analytical solutions. Results showed that the rim thickness of the gear is the main parameter in terms of tangential stress occurring at the bottom land of the gear. Positive profile shifting reduces the tangential stress while the pitch diameter of the gear remains constant. Also, lower tolerance class could be selected to moderate stress for small rim thickness.


Author(s):  
Xiaowei Cheng ◽  
Haoyou Zhang

AbstractUnder strong earthquakes, reinforced concrete (RC) walls in high-rise buildings, particularly in wall piers that form part of a coupled or core wall system, may experience coupled axial tension–flexure loading. In this study, a detailed finite element model was developed in VecTor2 to provide an effective tool for the further investigation of the seismic behaviour of RC walls subjected to axial tension and cyclic lateral loading. The model was verified using experimental data from recent RC wall tests under axial tension and cyclic lateral loading, and results showed that the model can accurately capture the overall response of RC walls. Additional analyses were conducted using the developed model to investigate the effect of key design parameters on the peak strength, ultimate deformation capacity and plastic hinge length of RC walls under axial tension and cyclic lateral loading. On the basis of the analysis results, useful information were provided when designing or assessing the seismic behaviour of RC slender walls under coupled axial tension–flexure loading.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2171
Author(s):  
Armin Yousefi ◽  
Ahmad Serjouei ◽  
Reza Hedayati ◽  
Mahdi Bodaghi

In the present study, the fatigue behavior and tensile strength of A6061-T4 aluminum alloy, joined by friction stir spot welding (FSSW), are numerically investigated. The 3D finite element model (FEM) is used to analyze the FSSW joint by means of Abaqus software. The tensile strength is determined for FSSW joints with both a probe hole and a refilled probe hole. In order to calculate the fatigue life of FSSW joints, the hysteresis loop is first determined, and then the plastic strain amplitude is calculated. Finally, by using the Coffin-Manson equation, fatigue life is predicted. The results were verified against available experimental data from other literature, and a good agreement was observed between the FEM results and experimental data. The results showed that the joint’s tensile strength without a probe hole (refilled hole) is higher than the joint with a probe hole. Therefore, re-filling the probe hole is an effective method for structures jointed by FSSW subjected to a static load. The fatigue strength of the joint with a re-filled probe hole was nearly the same as the structure with a probe hole at low applied loads. Additionally, at a high applied load, the fatigue strength of joints with a refilled probe hole was slightly lower than the joint with a probe hole.


Sign in / Sign up

Export Citation Format

Share Document