Detecting the key geometrical features and grades of carbide inserts for the turning of nickel-based alloys concerning surface integrity

Author(s):  
A Fernández-Valdivielso ◽  
LN López de Lacalle ◽  
G Urbikain ◽  
A Rodriguez

Machining science is aimed at defining both cutting tools and machining conditions based on economic performance and to maintain workpiece surface integrity. Currently, machinists face a wide offer of turning, milling, drilling, and threading tools. Tools present a lot of similarities and light differences between them, being the latter the concealed reasons for a better or worse performance on difficult-to-cut alloys machining. However machinists had not useful methods for detecting which key tool aspects implies the best performance. The classic and expensive 'test-trial' method results non-viable due to the market exponential increase, both in size and specialization. This paper brings up an indirect method for seeking common features in the group of those tools with the best performance on machining Inconel 718. The method is divided into five stages, namely: (a) raw testing of a basic operation with a lot of commercial solutions for the same operation; (b) filtering of results to reduce the feasible solutions to a few ones, studying the common features of successful cases; (c) testing of these feasible solutions aimed at choosing the best insert or tool (d); and finally (e) full testing concerning all workpiece surface integrity issues. The proposed method provides knowledge based on the distilling of results, identifying carbide grades, chipbreakers shapes, and other features for having the best tool performance. All surface integrity effects are checked for the best solution. This new point of view is the only way for improving the difficult-to-cut alloys machining, reaching technical conclusions with industrial interest. This paper shows the method applied on Inconel 718 turning, resulting in a carbide grade with 10% cobalt, submicron grain size (0.5–0.8 µm) and hardness around 1760 HV, coating TiAlN monolayer with 3.5 µm thickness, chipbreaker giving 19° of rake angle that becomes 13° real one after insert is clamped on toolholder. Cutting edge radius after coating was 48 µm approximately. Cutting speed was 70 m/min higher in comparison with that recommended in handbooks.

2021 ◽  
Vol 5 (3) ◽  
pp. 100
Author(s):  
Dongdong Xu ◽  
Liang Ding ◽  
Yang Liu ◽  
Jinming Zhou ◽  
Zhirong Liao

It is essential for superalloys (e.g., Inconel 718) to obtain an anticipated surface integrity after machining, especially for safety critical areas (e.g., aerospace). As one of the main characteristics for cutting tools, the rake angle has been recognized as a key factor that can significantly influence the machining process. Although there are large research interests and outcomes in the machining of nickel-based superalloys, most of them focus on the surface integrity and macroscale temperature observation, whereas the temperature distribution in the tool rake face is not clear. Thus, it is necessary to investigate the basic role of rake angles and the tool–workpiece interaction mechanism to determine the machining condition variations and surface integrity. In the present study, both experimental and numerical methods are employed to explore the cutting force, thermal distribution, and shear angles during the process and the metallurgy characteristics of the subsurface after machining, as well as the mechanical properties. The research has emphasized the importance of rake angles on both the cutting process and machined surface integrity, and has revealed the microscale temperature distribution in the tool rake face, which is believed to have a close relationship with the tool crater wear. In addition, it is clearly presented that the surface generated with positive rake angle tools generates the minimum subsurface deformation and less strain hardening on the workpiece.


Author(s):  
Menderes Kam

This study investigated the effects of Deep Cryogenic Treatment (DCT) on machinability, hardness, and microstructure in dry turning process of AISI 4140 (48-51 HRc) tempered steels with ceramic cutting tools on the surface roughness (Ra). DCT process of steels has shown significant improvement in their mechanical properties. In this context, experiments were made with Taguchi L16 method and optimum values were determined. Three different values for each control factors as: different heat treated samples, cutting speeds (160, 200, 240, 280 m/min), feed rates (0.08, 0.12, 0.16, 0.20 mm/rev) were selected. As a result, the lowest Ra value was found to be 0.159 µm for the DCTT36 sample at a cutting speed of 240 m/min, a feed rate of 0.08 mm/rev. The optimum Ra value was the lowest for the DCTT36 sample compared to the other samples as 0.206 µm. The hardness values of the micro and macro were highest for the DCTT36 sample. Microstructural point of view Scanning Electron Microscopy (SEM) point of view, the DCCT36 sample showed that best results owing to its homogeneity. It was concluded that lower Ra values can be obtained with ceramic cutting tool in dry turning experiments according to the studies in the literature review. It is thought to be preferred as an alternative to cylindrical grinding process due to lower cost.


2011 ◽  
Vol 418-420 ◽  
pp. 1482-1485 ◽  
Author(s):  
Erry Yulian Triblas Adesta ◽  
Muataz Al Hazza ◽  
Delvis Agusman ◽  
Agus Geter Edy Sutjipto

The current work presents the development of cost model for tooling during high speed hard turning of AISI 4340 hardened steel using regression analysis. A set of experimental data using ceramic cutting tools, composed approximately of Al2O3 (70%) and TiC (30%) on AISI 4340 heat treated to a hardness of 60 HRC was obtained in the following design boundary: cutting speeds (175-325 m/min), feed rate (0.075-0.125 m/rev), negative rake angle (0 to -12) and depth of cut of (0.1-0.15) mm. The output data is used to develop a new model in predicting the tooling cost using in terms of cutting speed, feed rate, depth of cut and rake angle. Box Behnken Design was used in developing the model. Predictive regression model was found to be capable of good predictions the tooling cost within the boundary design.


1984 ◽  
Vol 30 (104) ◽  
pp. 77-81 ◽  
Author(s):  
D.K. Lieu ◽  
C.D. Mote

AbstractThe cutting force components and the cutting moment on the cutting tool were measured during the orthogonal machining of ice with cutting tools inclined at negative rake angles. The variables included the cutting depth (< 1 mm), the cutting speed (0.01 ms−1to 1 ms−1), and the rake angles (–15° to –60°). Results of the experiments showed that the cutting force components were approximately independent of cutting speed. The resultant cutting force on the tool was in a direction approximately normal to the cutting face of the tool. The magnitude of the resultant force increased with the negative rake angle. Photographs of ice-chip formation revealed continuous and segmented chips at different cutting depths.


2021 ◽  
Author(s):  
Hüseyin Gürbüz ◽  
Şehmus Baday

Abstract Although Inconel 718 is an important material for modern aircraft and aerospace, it is a kind material, which is known to have low machinability. Especially, while these types of materials are machined, high cutting temperatures, BUE on cutting tool, high cutting forces and work hardening occur. Therefore, in recent years, instead of producing new cutting tools that can withstand these difficult conditions, cryogenic process, which is a heat treatment method to increase the wear resistance and hardness of the cutting tool, has been applied. In this experimental study, feed force, surface roughness, vibration, cutting tool wear, hardness and abrasive wear values that occurred as a result of milling of Inconel 718 material by means of cryogenically treated and untreated cutting tools were investigated. Three different cutting speeds (35-45-55 m/min) and three different feed rates (0.02-0.03-0.04 mm/tooth) at constant depth of cut (0.2 mm) were used as cutting parameters in the experiments. As a result of the experiments, lower feed forces, surface roughness, vibration and cutting tool wear were obtained with cryogenically treated cutting tools. As the feed rate and cutting speed were increased, it was seen that surface roughness, vibration and feed force values increased. At the end of the experiments, it was established that there was a significant relation between vibration and surface roughness. However, there appeared an inverse proportion between abrasive wear and hardness values. While BUE did not occur during cryogenically treated cutting tools, it was observed that BUE occurred in cutting tools which were not cryogenically treated.


1990 ◽  
Vol 112 (2) ◽  
pp. 184-189 ◽  
Author(s):  
D. V. Hutton ◽  
Qinghuan Yu

Experimental evidence is presented which indicates that the presence of a built-up edge can significantly affect the generation of acoustic emission in metal cutting. Results for machining SAE 1018 and 4140 steels show that the built-up edge can mask the generally accepted AE-cutting speed relation when cutting tools having small rake angles are used. Under cutting conditions conducive to development of a built-up edge, it is shown that increased acoustic emission is generated as a result of increased effective rake angle and corresponding increase of shear angle in the primary deformation zone. Three distinct types of built-up edge have been observed and classified as immature, periodic, or developed, according to effect on acoustic emission.


2013 ◽  
Vol 652-654 ◽  
pp. 2105-2108
Author(s):  
Xu Xing Jin

Mar-M247 is widely used in industry for its excellent mechanical properties at high temperatures, but it has the shortcoming of difficulty manufactured. In order to obtain the cutting characteristics of Mar-M247, firstly, an end milling experiment was set up accordingly, where three types of cutting tools coated respectively by TiN, TiCN and TiAlN were employed. Then the parameters of cutting speed and feed rate were defined as the tool cutting variables. Finally, based on different cutting variables, the performance of tool wear, tool life, and workpiece surface roughness were analyzed and discussed. The results indicate when the tool coated by TiAlN, cutting speed of range 1600 ~ 3200 rpm and feed rate of range 0.06 ~ 0.08 mm / tooth are chosen together, the integrated states manufactured of the tool and the workpiece would be best, the method of this research can provide some references for studying others Nickel-based superalloys.


2016 ◽  
Vol 1136 ◽  
pp. 561-566
Author(s):  
Tatsuya Sugihara ◽  
Shota Takemura ◽  
Toshiyuki Enomoto

Nickel-based superalloys such as Inconel 718 are known as one of the most difficult-to-cut materials due to their mechanical and chemical properties and the tool life is extremely short. Recently, Cubic-Boron-Nitride (CBN) has received a considerable attention as a material for cutting tools and has been considered to be a major candidate for high performance cutting of Inconel 718. However, the detailed wear behavior of CBN tools in cutting of Inconel 718 is not sufficiently understood yet, and the performances of CBN tools are still insufficient in practical use. To overcome this problem, we first conducted orthogonal cutting experiments on Inconel 718 at low (20 m/min) and high (100 m/min) cutting speeds employing CBN cutting tools to clarify the detailed wear mechanisms. Moreover, relationship between surface microstructures of the cutting tool and wear resistance was investigated. As a result, it was found that a rake face with micro grooves significantly suppressed the crater wear at low cutting speed, although polished surface rake face reduced the initial crater wear by approximately 40 % compared to the non-polished tool in high speed cutting of Inconel 718.


Sign in / Sign up

Export Citation Format

Share Document