Dynamic crashing behavior of thin-walled conical tubular structures with nonlinearly-graded diameters

Author(s):  
Fengxiang Xu ◽  
Suo Zhang ◽  
Kunying Wu

Thin-walled structures with graded property have been paid more attention in recent years due to their significant balance between lightweight and crashworthiness. However, few studies have been focused on energy absorption capacity of thin-walled conical tubes with graded diameters. In this paper, the thin-walled conical aluminum tubes with nonlinearly-graded diameters are introduced and their corresponding crashing characteristics are performed. The diameters are assumed to nonlinearly vary according to a power-law distribution function primarily determined by a graded exponent n. It is found that the total weight of thin-walled conical tubes decreases with the increasing of the gradient exponent. The energy-absorbed performances such as specific energy absorption, initial peak crashing force, and mean crashing force of those graded tubular structures are numerically analyzed. And then the effects of various geometric parameters such as the gradient exponent, deformation distance, and diameter range on crashing behaviors are further evaluated. It is observed that those parameters especially the gradient exponent has significantly obvious effects on crashworthiness of the proposed nonlinearly graded tubes. It is also noted that the straight conical structure with gradient n = 1.0 may not show the best energy absorption characteristics compared with other gradients. The work could provide valuable information for effective design of thin-walled energy-absorbing structures with variable geometrical parameters.

2011 ◽  
Vol 213 ◽  
pp. 88-92 ◽  
Author(s):  
Qing Chun Wang ◽  
Hao Long Niu ◽  
Guo Quan Wang ◽  
Yu Xin Wang

Different aluminum foam filling lengths were used to increase the bending energy absorbing capacity of the popularly used hat sections. Bending energy-absorption performance of the thin-walled tubes was numerically studied by explicit non-linear software LS-Dyna. First empty hat section subjected to quasi-static bending crushing was simulated, then structures with different aluminium foam filling lengths were calculated, finally energy absorption capacity of these structures were compared. Calculation results showed that, the internal energy absorbed and mass specific energy absorption capacity of foam filled thin walled structures were increased significantly compared to the empty sections. The reason of the improvement was mainly due to the contact of the aluminium foam and the structure. Aluminium foam filling is a promising method for improving lateral energy absorbing capacity of thin-walled sections.


2014 ◽  
Vol 1019 ◽  
pp. 96-102
Author(s):  
Ali Taherkhani ◽  
Ali Alavi Nia

In this study, the energy absorption capacity and crush strength of cylindrical thin-walled structures is investigated using nonlinear Finite Elements code LS-DYNA. For the thin-walled structure, Aluminum A6063 is used and its behaviour is modeled using power-law equation. In order to better investigate the performance of tubes, the simulation was also carried out on structures with other types of cross-sections such as triangle, square, rectangle, and hexagonal, and their results, namely, energy absorption, crush strength, peak load, and the displacement at the end of tubes was compared to each other. It was seen that the circular cross-section has the highest energy absorption capacity and crush strength, while they are the lowest for the triangular cross-section. It was concluded that increasing the number of sides increases the energy absorption capacity and the crush strength. On the other hand, by comparing the results between the square and rectangular cross-sections, it can be found out that eliminating the symmetry of the cross-section decreases the energy absorption capacity and the crush strength. The crush behaviour of the structure was also studied by changing the mass and the velocity of the striker, simultaneously while its total kinetic energy is kept constant. It was seen that the energy absorption of the structure is more sensitive to the striker velocity than its mass.


Author(s):  
Sean Jenson ◽  
Muhammad Ali ◽  
Khairul Alam

Abstract Thin walled axial members are typically used in automobiles’ side and front chassis to improve crashworthiness of vehicles. Extensive work has been done in exploring energy absorbing characteristics of thin walled structural members under axial compressive loading. The present study is a continuation of the work presented earlier on evaluating the effects of inclusion of functionally graded cellular structures in thin walled members under axial compressive loading. A compact functionally graded composite cellular core was introduced inside a cross tube with side length and wall thickness of 25.4 mm and 3.048 mm, respectively. The parameters governing the energy absorbing characteristics such as deformation or collapsing modes, crushing/ reactive force, plateau stress level, and energy curves, were evaluated. The results showed that the inclusion of composite graded cellular structure increased the energy absorption capacity of the cross tube significantly. The composite graded structure underwent progressive stepwise, layer by layer, crushing mode and provided lateral stability to the cross tube thus delaying local tube wall collapse and promoting large localized folds on the tube’s periphery as compared to highly localized and compact deformation modes that were observed in the empty cross tube under axial compressive loading. The variation in deformation mode resulted in enhanced stiffness of the composite structure, and therefore, high energy absorption by the structure. This aspect has a potential to be exploited to improve the crashworthiness of automobile structures.


Author(s):  
Zhichao Li ◽  
Subhash Rakheja ◽  
Wen-Bin Shangguan

Thin-walled structures are widely used as energy absorbers in automotive vehicles due to their lightweight and high-energy absorption efficiency. In order to improve the energy absorption characteristics of thin-walled structures subjected to different loading angles, different types of novel multi-cell structures are proposed in this paper. The numerical method is used to study the crushing behaviors of the proposed multi-cell structures under different loading angles. It is found that the proposed multi-cell structures have considerably small initial peak force under axial load and avoid the appearance of global buckling deformation mode under oblique loads. Moreover, reasonably distributed wall thickness for each square tube in the thin-walled structure can enhance its energy absorption capacity under different loading angles.


2012 ◽  
Vol 165 ◽  
pp. 130-134 ◽  
Author(s):  
Fauziah Mat ◽  
K. Azwan Ismail ◽  
S. Yaacob ◽  
O. Inayatullah

Thin-walled structures have been widely used in various structural applications asimpact energy absorbing devices. During an impact situation, thin-walled tubesdemonstrate excellent capability in absorbing greater energy through plastic deformation. In this paper, a review of thin-walled tubes as collapsible energy absorbers is presented.As a mean of improving the impact energy absorption of thin-walled tubes, the influence of geometrical parameters such as length, diameter and wall thickness on the response of thin-walled tubes under compression axial loading are briefly discussed. Several design improvements proposed by previous researchers are also presented. The scope of this review is mainly focus on axial deformation under quasi-static and dynamic compressive loading. Other deformations, such as lateral indentation, inversion and splitting are considered beyond the scope of this paper. This review is intended to assist the future development of thin-walled tubes as efficient energy absorbing elements.


2013 ◽  
Vol 437 ◽  
pp. 158-163
Author(s):  
Wei Liang Dai ◽  
Xu Guang Li ◽  
Qing Chun Wang

Energy absorbing characteristics of the non-stiffened and stiffened single hat sections subjected to quasi-static axial crushing were experimentally investigated. First non-stiffened hat sections were axially crushed, then structures with different stiffened methods (stiffened in hat and stiffened in the plate) were tested, finally energy absorption capacities of these structures were compared. Test results showed that, for the appropriate designed stiffened tube, the mean crush force and mass specific energy absorption were increased significantly compared to the non-stiffened. Stiffened in hat section showed a little more energy absorption capacity than that stiffened in the plate, but the structure may sustain a global bending.


2019 ◽  
Vol 11 (1) ◽  
pp. 41-68 ◽  
Author(s):  
Chukwuemeke William Isaac

The dynamic oblique crushing of circular thin-walled tubes with the presence of non-propagating crack was investigated numerically. The material considered was strain rate sensitive with crack located at the distal end of the tube. Major crashworthiness parameters were obtained and the analysis of the structural response for idealized and finite element crushed thin-walled tubes was also carried out. The study shows that crack initiation on energy absorbing tubes increase their crushing force efficiency under oblique impact, decrease their crushing force efficiency under axial impact and reduce their crashworthiness performance such as the energy absorption capacity and specific energy absorption under axial and oblique impact. Results of the crashworthiness parameters, deformation modes, damage morphology, stress–strain relations, absorption energy characteristics and crushing force-displacement history were obtained. Furthermore, the numerical study reveals both the desirable and undesirable consequence of crack on the overall crashworthiness performance of energy absorbing circular thin-walled tubes.


Author(s):  
Muhammad Ali ◽  
Eboreime Ohioma ◽  
Khairul Alam

Square tubes are primarily used in automotive structures to absorb energy in the event of an accident. The energy absorption capacity of these structural members depends on several parameters such as tube material, wall thickness, axial length, deformation modes, locking strain, crushing stress, etc. In this paper, the work presented is a continuation of research conducted on exploring the effects of the introduction of cellular core in tubular structures under axial compressive loading. Here, the crushing response of composite cellular core tube was numerically studied using ABAQUS/Explicit module. The energy absorbing characteristics such as deformation or collapsing modes, crushing/ reactive force, crushing stroke, and energy curves were discussed. The composite cellular core tube shows promise for improving the crashworthiness of automobiles.


2019 ◽  
Vol 8 (4) ◽  
pp. 3911-3915 ◽  

To mitigate the impact forces in crash events, thin-walled tubular elements are employed as an energy absorbing attenuators in frontal part of the automotive vehicles. To develop more progressive deformation modes, at the initial period, and to absorb more impact energy at the final period of crash, it is significant to enhance the crashworthiness performance of the tube by modifying its geometrical parameters. Multi-cell tubular structures have recognized to own superior impact energy absorbing ability and lightweight effect in the modern automotive vehicles. This research article examines the deformation behaviour of thin walled aluminum alloy multi-cell tube with different stiffeners exposed to axial impact loading using numerical simulation. Nonlinear impact simulations were performed on multi-cell tubes using finite element ABAQUS/CAE explicit code. From the overall results obtained, the deformation behaviour of multi-cell tubes was compared. Furthermore, hexagonal tubes with stiffeners were retained as most prominent for better energy dissipation. This type of tube was found to be most efficient type to enhance the crashworthiness performance during axial impact.


Sign in / Sign up

Export Citation Format

Share Document