Effect of crystallographic orientation on the hardness of polycrystalline materials AA7075

Author(s):  
Man Zhao ◽  
Xia Ji ◽  
Beizhi Li ◽  
Steven Y Liang

As one of the most important properties of materials, micro-hardness is influenced by material microstructure significantly. The reported data show that the micro-hardness of materials varies with the variation of crystallographic orientation. This paper presents an analytical model to quantify the effect of crystallographic orientation on micro-hardness by analyzing the mechanical behavior in the test of Vickers hardness. The plastic deformation occurs under the micro-indentation with the flow stress affected significantly by crystallographic orientation of material. This paper develops a Taylor factor model to quantify the effect of crystallographic orientation on the flow stress of polycrystalline materials, by examining the number and the style of activated slip systems. Considering the linear relationship between the flow stress and Vickers hardness, the effect of crystallographic orientation on the Vickers hardness is established. To verify the Taylor factor model, compression tests and Vickers hardness tests were conducted. The result shows that the predictions coincided with the experimental data, which suggests that the model considering the variation of crystallographic orientation is accurate and the Taylor factor model is reasonable. To analyze the sensitivity of flow stress and Vickers hardness to CO, this paper also predicted flow stress and hardness using models without considering the variability of Taylor factor and the athernal stress. The three predictions were compared with the experimental data, and the results proved that the model considering the variability Taylor factor improves flow stress and accuracy of hardness models.

2018 ◽  
Vol 5 ◽  
pp. 15
Author(s):  
Man Zhao ◽  
Xia Ji ◽  
Beizhi Li ◽  
Steven Y. Liang

In the micro-grinding of single-crystal copper, the effect of crystallography becomes significant as the wheel works intra-crystalline. To quantify the effect of crystallographic orientation (CO) related to the cutting direction on the micro-grinding process, this article presents a Taylor factor model by examining the number and style of activated slip systems. Then, the flow stress model of monocrystalline material is developed considering the variation of the Taylor factor. Furthermore, the models of chip formation and rubbing forces are derived from the flow stress model, while the plowing force is predicted by the Vickers hardness. Then, the overall grinding force model of the whole wheel is developed by incorporating the process parameters and the wheel properties. Finally, micro-grinding experiments are conducted to verify the model, using only the Taylor factor as the variable. The proposed analysis is also compared with the previously reported model, which considers the Taylor factor as a constant of 3.06. The comparison between the two predictions and experimental data shows that the consideration of Taylor factor variability improves the accuracy of prediction.


Author(s):  
Man Zhao ◽  
Xia Ji ◽  
Steven Y Liang

In micro-grinding, the depth of cut is smaller than the grain size of workpiece material. Since the micro-grinding wheel cuts through the grain boundaries, the crystallographic effects become more significant in the micro-grinding than that in macro-machining. To quantify the effect of crystallographic orientation on the flow stress of polycrystalline material, the Taylor factor model is developed by examining the number and type of the activated slip systems. Then, the shear force model is developed based on the flow stress model considering the effect of crystallographic orientation. Moreover, the plowing force is predicted based on the Vickers hardness of workpiece material and the plowing friction coefficient. A comprehensive model is then proposed to predict micro-grinding force by consolidating the mechanical, thermal, crystallographic, and size effect. Micro-grinding experiments adopting Taguchi’s method were conducted to verify the model, and the results indicated that the predictions agree well with the experimental data. Besides, single-factorial experiments were conducted with the only variable being Taylor factor and the results suggest that the Taylor factor model is capable of capturing the effect of crystallographic orientation on grinding force.


2020 ◽  
Vol 142 (10) ◽  
Author(s):  
Man Zhao ◽  
Xia Ji ◽  
Yixuan Feng ◽  
Steven Y. Liang

Abstract This investigation proposes a physics-based model to predict the solid-state phase transformation of maraging steel subjected to microgrinding. In microgrinding, the effect of crystallography is significant on the grinding phase transformation in light of the fact that the depth of cut is on the same order of magnitude as the grain size. This paper proposes a predictive model of phase transformation considering crystallographic orientation (CO) with respect to the grinding direction based on the Taylor factor model. In addition, the flow stress model is modified by adding a CO sensitive term and incorporating the mechanical-thermal loadings. Furthermore, the temperature, temperature rate, strain rate, and Taylor factor are also combined in the model of phase transition. The kinetics parameters of the models are obtained by a regression analysis against experimental data. Finally, the modified models are validated with experiments data and compared with the previous prediction.


2019 ◽  
Vol 6 ◽  
pp. 22
Author(s):  
Man Zhao ◽  
Xia Ji ◽  
Steven Y. Liang

Tensile stress and thermal damage resulting from thermal loading will reduce the anti-fraying and anti-fatigue of workpieces, which is undesirable for micro-grinding, so it is imperative to control the rise of temperature. This investigation aims to propose a physical-based model to predict the temperature with the process parameters, wheel properties and material microstructure taken into account. In the calculation of heat generated in the micro-grinding zone, the triangular heat-flux distribution is adopted. The reported energy partition model is also utilized to calculate the heat converted into the workpiece. In addition, the Taylor factor model is used to estimate the effects of crystallographic orientation (CO) and its orientation distribution function (ODF) on the workpiece temperature by affecting the flow stress and grinding forces in micro-grinding. Finally, the physical model is verified by performing micro-grinding experiments using the orthogonal method. The result proves that the prediction matches well with the experimental values. Besides, the single-factorial experiments are conducted with the result showing that the model with the consideration of the variation of Taylor factor improves the accuracy of the temperature prediction.


2007 ◽  
Vol 340-341 ◽  
pp. 823-828 ◽  
Author(s):  
Wei Guo Guo

In the present paper, in order to better understand the third type “dynamic strain aging” occurring during the plastic flow of metals, the uniaxial compressive experimental data ever obtained in University of California, San Diego using an Instron servo-hydraulic testing machine and the Hopkinson technique are systematically analysed. These experimental data cover the plastic flow stress of several fcc, hcp, bcc polycrystalline materials and several alloys at a broad range of temperatures (77K – 1,100K) and strain rates (0.001/s – 10,000/s). In analysis, the appearing region of the “dynamic strain aging ” under different temperatures and strain rates are respectively plotted by the curves of stress vs temperature, and stress vs strain for fcc, hcp and bcc metals. The results show that: (1) this third type “dynamic strain aging ” occurs in all hcp, bcc and fcc polycrystalline or alloy materials, and there are different profiles of stress-strain curve; (2) the “dynamic strain aging ”occurs in a matching coincidence of the temperature and strain rate, its temperature region will shift to higher region with increasing strain rates; (3) bcc materials do not have an initial pre-straining strain as the onset of work-hardness rate change for the “dynamic strain aging ”; and (4) based on the explanations of dynamic strain aging with serration curves (Portevin-Lechatelier effect) and other explaining mechanisms of references, The mechanism of third DSA is thought as the rapid/continuous formation of the solute atmospheres at the mobile dislocation core by the pipe diffusion along vast collective forest dislocations to result in a continuous rise curve of flow stress. Finally, several conclusions are also presented.


2014 ◽  
Vol 552 ◽  
pp. 247-250
Author(s):  
Fa Cai Ren ◽  
Jun Chen ◽  
Fei Chen

The stress-strain data from hot compression tests over a wide range of temperatures (1173–1473 K at an interval of 100 K) and strain rates (0.01, 0.1, 1 and 10 s-1) were conducted using Gleeble-1500D thermo-mechanical simulator. A modified Zerilli-Armstrong constitutive model was developed using the experimental data of 70Cr3Mo back-up roll steel. The predictable efficiency of this model was evaluated by correlation coefficient and the value was 0.9902.


The analysis of the previous results of the study on concrete stress-strain behavior at elevated temperatures has been carried out. Based on the analysis, the main reasons for strength retrogression and elastic modulus reduction of concrete have been identified. Despite a significant amount of research in this area, there is a large spread in experimental data received, both as a result of compression and tension. In addition, the deformation characteristics of concrete are insufficiently studied: the coefficient of transverse deformation, the limiting relative compression deformation corresponding to the peak load and the almost complete absence of studies of complete deformation diagrams at elevated temperatures. The two testing chambers provided creating the necessary temperature conditions for conducting studies under bending compression and tension have been developed. On the basis of the obtained experimental data of physical and mechanical characteristics of concrete at different temperatures under conditions of axial compression and tensile bending, conclusions about the nature of changes in strength and deformation characteristics have been drawn. Compression tests conducted following the method of concrete deformation complete curves provided obtaining diagrams not only at normal temperature, but also at elevated temperature. Based on the experimental results, dependences of changes in prism strength and elastic modulus as well as an equation for determining the relative deformation and stresses at elevated temperatures at all stages of concrete deterioration have been suggested.


Metals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 880 ◽  
Author(s):  
Rongchuang Chen ◽  
Haifeng Xiao ◽  
Min Wang ◽  
Jianjun Li

In this work, hot compression experiments of 300M steel were performed at 900–1150 °C and 0.01–10 s−1. The relation of flow stress and microstructure evolution was analyzed. The intriguing finding was that at a lower strain rate (0.01 s−1), the flow stress curves were single-peaked, while at a higher strain rate (10 s−1), no peak occurred. Metallographic observation results revealed the phenomenon was because dynamic recrystallization was more complete at a lower strain rate. In situ compression tests were carried out to compare with the results by ex situ compression tests. Hot working maps representing the influences of strains, strain rates, and temperatures were established. It was found that the power dissipation coefficient was not only related to the recrystallized grain size but was also related to the volume fraction of recrystallized grains. The optimal hot working parameters were suggested. This work provides comprehensive understanding of the hot workability of 300M steel in thermal compression.


Author(s):  
Yingying Zhang ◽  
Shijie Zhang

This study proposes a 1D meanline program for the modeling of modern transonic axial multistage compressors. In this method, an improved blockage factor model is proposed. Work-done factor that varies with the compressor performance conditions is added in this program, and at the same time a notional blockage factor is kept. The coefficient of deviation angle model is tuned according to experimental data. In addition, two surge methods that originated from different sources are chosen to add in and compare with the new method called mass flow separation method. The salient issues presented here deal first with the construction of the compressor program. Three well-documented National Aerodynamics and Space Administration (NASA) axial transonic compressors are calculated, and the speedlines and aerodynamic parameters are compared with the experimental data to verify the reliability and robustness of the proposed method. Results show that consistent agreement can be obtained with such a performance prediction program. It was also apparent that the two common methods of surge prediction, which rely upon either stage or overall characteristic gradients, gave less agreement than the method called mass flow separation method.


2013 ◽  
Vol 197 ◽  
pp. 232-237 ◽  
Author(s):  
Dariusz Kuc ◽  
Eugeniusz Hadasik

The paper presents a model of microstructure changes elaborated for magnesium alloy type AZ31. In previous papers, the function of flow stress was defined on the basis of uniaxial hot compression tests. On the basis of marked relaxation curves and quantitative tests of structure the softening indicators were defined together with elaboration of equations which describe the changes in the grain size. Marked coefficients of equations were introduced in the code of simulation program. Calculations were conducted for given temperature values from 450 ÷ 250°C and strain rate from 0.01 to 10 s-1, which correspond with rolling temperature range of this alloy. Prepared model will allow the proper choice of parameters in hot rolling process of this alloy to achieve the assumed microstructure.


Sign in / Sign up

Export Citation Format

Share Document