Application of a rolling bearing life model with surface and subsurface survival to hybrid bearing cases

Author(s):  
Guillermo E Morales-Espejel ◽  
Antonio Gabelli

A previously published rolling bearing life model that separates the surface and subsurface survival is briefly summarised. The model is applied to the case of hybrid bearings and discussed with regard to a selected set of application examples. Ball hybrid bearings under equal load condition show 12% higher Hertzian stress than all-steel bearings. However, field applications, typically under light load, poor lubrication and contamination, show that hybrid bearings have longer fatigue life than all-steel bearings. Traditional all-steel life models fail to predict this type of behaviour. In this paper, it is shown that hybrid bearing unique fatigue performance can be described using the idea of separation of surface and subsurface survival. The model applies the classical rolling contact fatigue in the subsurface region of the rolling contact while a newly developed tribologically dependent surface degradation models is used for the ceramic-steel raceway interface. It is found that the particular fatigue resistance of the ceramic-steel interface of the hybrid bearing raceway can, in most cases, compensate for the additional stress present in the subsurface region of the contact.

Author(s):  
Guillermo E Morales-Espejel ◽  
Antonio Gabelli

The effects of kinematic sliding on rolling contact fatigue life have been discussed in many occasions, often with some disregard of the fundamental principles of tribology. In this paper, the authors’ intention is to discuss this issue with a perspective as objective as possible and performing a study on factual and known scientific knowledge, applying tribology modelling and methods. The effects of kinematic sliding of Hertzian contacts are studied from three different standpoints: (1) by analysing the combination of sliding speed and contact pressure giving rise to seizure, that is high instantaneous contact temperatures leading to film collapse, (2) by assessing the possible effects of sliding to surface traction and fatigue, (3) by discussing other possible effects of sliding in heavily loaded lubricated contacts as the concurrent damage mechanism caused by wear and rolling contact fatigue. Throughout the paper, different numerical models are presented and discussed alongside with some experimental data. This approach provides a comprehensive assessment of the various phenomena related to the kinematic sliding of rolling bearings. The different mechanisms involved and the interaction of sliding with the elastohydrodynamic lubricant film, frictional stress, wear and fatigue are discussed, and their significance to the performance of the bearing is qualified.


1996 ◽  
Vol 118 (2) ◽  
pp. 434-442 ◽  
Author(s):  
J. R. Miner ◽  
J. Dell ◽  
A. T. Galbato ◽  
M. A. Ragen

Results of an Advanced Research Projects Agency (ARPA) sponsored project to demonstrate the operational benefits of incorporating advanced structural ceramic ball elements into the F117-PW-100 aircraft gas turbine engine high rotor thrust bearings is described. This program consists of design, fabrication, and experimental evaluation of candidate hybrid ball bearing designs in Pratt & Whitney and MRC Bearings test facilities. The bearing design criteria and development test conditions utilized for the project are compatible with the requirements of the F117-PW-100 engine system application. Two hybrid bearing designs were produced by analytically varying internal geometry features such as M-50 race curvatures and contact angles to optimize for the modulus of elasticity of the ceramic balls. CERBEC grade NBD 200 silicon nitride ceramic balls (1 1/8 in. size) demonstrated integrity and a quadruple rolling contact fatigue life improvement versus state-of-the-art M-50 steel balls in single ball test rigs. Thermal performance data obtained in full-scale bearing rig performance testing with 178 mm size hybrid and all-steel baseline bearings shows comparable characteristics. The hybrid bearing displayed a distinct survivability benefit in bearing liquid lubricant starvation testing. Two dozen hybrid bearings will be fabricated for full-scale bearing rig endurance tests to be conducted in 1995–1996 as a prerequisite to validation in operating F117-PW-100 engines in 1996–1997.


1999 ◽  
Vol 121 (3) ◽  
pp. 468-472 ◽  
Author(s):  
Takeo Yoshioka ◽  
Atsushi Korenaga ◽  
Hiroki Mano ◽  
Takashi Yamamoto

We have developed a new method for measuring time intervals of Acoustic Emission (AE) generation for diagnosis of a radial rolling bearing. The method makes the AE signal itself a trigger of the oscillation of the clock pulse and measures the time interval of AE generation by integration of the clock pulses. The measurement device consists of the threshold, clock, time interval measurement and memory circuit, and was applied to rolling contact fatigue experiments. It was confirmed by the experiments that the measured time intervals of AE generation on the inner raceway or the ball agreed with the value calculated based on the kinetics of the rolling bearing. Moreover, we could identify the elements in which a fatigue crack was propagating by the method before the spalling appeared. The identified elements agreed with the failed elements.


Author(s):  
D Nélias ◽  
T Yoshioka

This paper describes a deep groove ball-bearing analysis which has been developed to simulate acoustic emission occurring during ball-bearing operation. The computer simulation is useful to clarify experimental research on rolling contact fatigue initiation using the acoustic emission technique. Results show the ability of the method to detect and to locate a subsurface defect, due to rolling contact fatigue, before the rolling bearing failure occurs. The subsurface defect can be accurately located within the inner ring of a deep groove ball-bearing operating under radial load.


2021 ◽  
Author(s):  
Graham Keep ◽  
Mark Wolka ◽  
Beth Brazitis

Abstract Through hardened steel ball fatigue failure is an atypical mode of failure in a rolling element bearing. A recent full-scale bench test resulted in ball spalling well below calculated bearing life. Subsequent metallurgical analysis of the spalled balls found inferior microstructure and manufacturing methods. Microstructural analysis revealed significant carbide segregation and inclusions in the steel. These can result from substandard spheroidized annealing and steel making practices. In addition, the grain flow of the balls revealed a manufacturing anomaly which produced a stress riser in the material making it more susceptible to crack initiation. The inferior manufactured balls caused at least an 80% reduction in rolling contact fatigue life of the bearing.


2013 ◽  
Vol 740 ◽  
pp. 295-299
Author(s):  
Xiao Yang Chen ◽  
Xue Jin Shen

In this paper, the effects of chamfer dimension at the Lundbergs profile needle roller end and the grinding undercut of raceway on the pressure distribution, which are used in the oscillatory applications, are discussed. The frame of numerical method for the crown drop evaluation considered these two effects is presented, which makes it possible to profile the needle rollers axially until the longitudinal pressure distribution is neither any edge effects nor high-pressure concentration at the center part of contacts. And the crown drop designed by this method is larger than that by Lundbergs theory. The comparison results of accelerated rolling contact fatigue experiment show that the width of grinding undercut and radius of the chamfer must be considered in determining the crown drop of the needle rollers.


2013 ◽  
Vol 683 ◽  
pp. 77-81 ◽  
Author(s):  
Shintaro Hazeyama ◽  
Shunsuke Oyama ◽  
Katsuyuki Kida ◽  
Takashi Honda ◽  
Koshiro Mizobe ◽  
...  

The polymer bearings have been widely used in recent years. In this study, ultra-high-molecular-weight-polyethylene (UHMWPE) is investigated. In order to investigate the relation between the lives, loads and rotation speeds, rolling contact fatigue tests were conducted. It was found that rotation speed related to the bearing life and wear loss.


Sign in / Sign up

Export Citation Format

Share Document