Numerical investigations of heat transfer around a hot block subject to a cross-flow and an extended jet hole using ternary hybrid nanofluids

Author(s):  
Bouziane Boudraa ◽  
Rachid Bessaïh

In the last few years, modern heat transfer technologies significantly improved to provide more efficient systems in industries. One of those technologies is cooling electronic components in laminar flow using water nanofluids, which is interesting. This research used a ternary hybrid nanofluid with various nanoparticle forms to conduct a numerical investigation of three-dimensional heat transfer and fluid flow over a heated block exposed to a horizontal flow and an impinging jet. The effects of several variables such as the Reynolds number ratio [Formula: see text], volume fraction of nanoparticles [Formula: see text], length of extended jet hole [Formula: see text], and the influence of the inclination angle of the impinging jet inlet [Formula: see text] on the fluid flow and heat transfer were examined. Using the Ansys-Fluent 14.5 program and under laminar flow conditions, the finite-volume method was applied with the help of the SIMPLE algorithm to solve continuity, momentum, and energy equations. Several characteristics are assessed, including velocity streamline, isotherm contours, Nusselt number contours, the average Nusselt number ([Formula: see text]), the friction factor [Formula: see text], and drop pressure [Formula: see text]. The findings of the current analysis revealed that adding an impinging jet can boost the heat transfer rate up to [Formula: see text] better than a non-impingement jet. Also, a significant enhancement in the heat transfer rate was obtained when growing one of these parameters α, [Formula: see text], and E. Moreover, the ternary hybrid nanofluid with different nanoparticle forms significantly boosts the heat transfer rate compared to the traditional nanofluid. The maximum heat transfer is reached as the velocity of the impinging jet rises. Inclining the angle of the impinging jet inlet with [Formula: see text] toward the channel inlet boosted the rate of heat transfer up to [Formula: see text] compared to the perpendicular impinging jet [Formula: see text]. A strong consensus has been reached with the theoretical and experimental findings found in the literature.

2019 ◽  
Vol 16 (2) ◽  
pp. 109-126 ◽  
Author(s):  
Ishrat Zahan ◽  
R Nasrin ◽  
M A Alim

A numerical analysis has been conducted to show the effects of magnetohydrodynamic (MHD) and Joule heating on heat transfer phenomenon in a lid driven triangular cavity. The heat transfer fluid (HTF) has been considered as water based hybrid nanofluid composed of equal quantities of Cu and TiO2 nanoparticles. The bottom wall of the cavity is undulated in sinusoidal pattern and cooled isothermally. The left vertical wall of the cavity is heated while the inclined side is insulated. The two dimensional governing partial differential equations of heat transfer and fluid flow with appropriate boundary conditions have been solved by using Galerkin's finite element method built in COMSOL Multyphysics. The effects of Hartmann number, Joule heating, number of undulation and Richardson number on the flow structure and heat transfer characteristics have been studied in details. The values of Prandtl number and solid volume fraction of hybrid nanoparticles have been considered as fixed. Also, the code validation has been shown. The numerical results have been presented in terms of streamlines, isotherms and average Nusselt number of the hybrid nanofluid for different values of governing parameters. The comparison of heat transfer rate by using hybrid nanofluid, Cu-water nanofluid,  TiO2 -water nanofluid and clear water has been also shown. Increasing wave number from 0 to 3 enhances the heat transfer rate by 16.89%. The enhanced rate of mean Nusselt number for hybrid nanofluid is found as 4.11% compared to base fluid.


2019 ◽  
Vol 30 (5) ◽  
pp. 2583-2605 ◽  
Author(s):  
Mohammad Mohsen Peiravi ◽  
Javad Alinejad ◽  
D.D. Ganji ◽  
Soroush Maddah

Purpose The purpose of this study is investigating the effect of using multi-phase nanofluids, Rayleigh number and baffle arrangement simultaneously on the heat transfer rate and Predict the optimal arrangement type of baffles in the differentiation of Rayleigh number in a 3D enclosure. Design/methodology/approach Simulations were performed on the base of the L25 Taguchi orthogonal array, and each test was conducted under different height and baffle arrangement. The multi-phase thermal lattice Boltzmann based on the D3Q19 method was used for modeling fluid flow and temperature fields. Findings Streamlines, isotherms, nanofluid volume fraction distribution and Nusselt number along the wall surface for 104 < Ra < 108 have been demonstrated. Signal-to-noise ratios have been analyzed to predict optimal conditions of maximize and minimize the heat transfer rate. The results show that by choosing the appropriate height and arrangement of the baffles, the average Nusselt number can be changed by more than 57 per cent. Originality/value The value of this paper is surveying three-dimensional and two-phase simulation for nanofluid. Also using the Taguchi method for Predicting the optimal arrangement type of baffles in a multi-part enclosure. Finally statistical analysis of the results by using of two maximum and minimum target Function heat transfer rates.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Nur Syahirah Wahid ◽  
Norihan Md Arifin ◽  
Najiyah Safwa Khashi'ie ◽  
Ioan Pop ◽  
Norfifah Bachok ◽  
...  

Purpose The purpose of this paper is to numerically investigate the hybrid nanofluid flow with the imposition of magnetohydrodynamic (MHD) and radiation effects alongside the convective boundary conditions over a permeable stretching/shrinking surface. Design/methodology/approach The mathematical model is formulated in the form of partial differential equations (PDEs) and are then transformed into the form of ordinary differential equations (ODEs) by using the similarity variables. The deriving ODEs are solved numerically by using the bvp4c solver in MATLAB software. Stability analysis also has been performed to determine the stable solution among the dual solutions obtain. For method validation purposes, a comparison of numerical results has been made with the previous studies. Findings The flow and the heat transfer of the fluid at the boundary layer are described through the plot of the velocity profile, temperature profile, skin friction coefficient and local Nusselt number that are presented graphically. Dual solutions are obtained, but only the first solution is stable. For the realizable solution at the shrinking surface, the proliferation of nanoparticle volume fraction (copper) and magnetic (magnetohydrodynamics) parameters can impede the boundary layer separation. Also, Biot number could enhance the temperature profile and the heat transfer rate at the shrinking surface region. The incrementation of 0.1% of Biot number has enhanced the heat transfer rate by approximately 0.1% and the incrementation of 0.5% volume fraction for copper has reduced the heat transfer rate by approximately 0.17%. Originality/value The presented model and numerical results are original and new. It can be used as a future reference for further investigation and related practical application. The main contribution of this investigation includes giving the initial prediction and providing the numerical data for the other researchers for their future reference regarding the impacts of nanoparticles volumetric concentration towards the main physical quantities of interest in the presence of magnetic and radiation parameters with the convective boundary conditions.


2018 ◽  
Vol 15 (1) ◽  
pp. 37-52 ◽  
Author(s):  
Khandker Farid Uddin Ahmed ◽  
Rehena Nasrin ◽  
Md. Elias

The fluid flow and heat transfer mechanism on steady state solutions obtained in circular and arc-square enclosures filled with water/Cu nanofluid as well as base fluid has been investigated numerically by Galerkin's weighted residual finite element procedure. The left and right boundaries of the cavities are, respectively, heated and cooled at constant temperatures, while their horizontal walls are adiabatic. Effects of buoyancy force (Rayleigh number) and viscous force (Prandtl number) with a wide range of Ra (103 - 106) and Pr (4.2 - 6.2) on heat transfer phenomenon inside cavities are observed. The fluid flow and temperature gradient are shown by streamlines and isotherms patterns. From the investigation, it is reported that the Rayleigh and Prandtl numbers are playing significant role in heat transfer rate. The variation in heat transfer is calculated in terms of average Nusselt number. Heat transfer rate is found to be higher for water/Cu nanofluid with 2% solid volume fraction than pure water. About 2.7% higher heat transfer rate is obtained for circular cavity than that of arc cavity using water/Cu nanofluid at Ra = 104 and Pr = 5.8.


Mathematics ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 276
Author(s):  
Nur Syazana Anuar ◽  
Norfifah Bachok

The mathematical modeling of unsteady flow of micropolar Cu–Al2O3/water nanofluid driven by a deformable sheet in stagnation region with thermal radiation effect has been explored numerically. To achieve the system of nonlinear ordinary differential equations (ODEs), we have employed some appropriate transformations and solved it numerically using MATLAB software (built-in solver called bvp4c). Influences of relevant parameters on fluid flow and heat transfer characteristic are discussed and presented in graphs. The findings expose that double solutions appear in shrinking sheet case in which eventually contributes to the analysis of stability. The stability analysis therefore confirms that merely the first solution is a stable solution. Addition of nanometer-sized particle (Cu) has been found to significantly strengthen the heat transfer rate of micropolar nanofluid. When the copper nanoparticle volume fraction increased from 0 to 0.01 (1%) in micropolar nanofluid, the heat transfer rate increased roughly to an average of 17.725%. The result also revealed that an upsurge in the unsteady and radiation parameters have been noticed to enhance the local Nusselt number of micropolar hybrid nanofluid. Meanwhile, the occurrence of material parameter conclusively decreases it.


2010 ◽  
Vol 132 (6) ◽  
Author(s):  
Kamil Kahveci

Buoyancy driven heat transfer of water-based nanofluids in a differentially heated, tilted enclosure is investigated in this study. The governing equations (obtained with the Boussinesq approximation) are solved using the polynomial differential quadrature method for an inclination angle ranging from 0 deg to 90 deg, two different ratios of the nanolayer thickness to the original particle radius (0.02 and 0.1), a solid volume fraction ranging from 0% to 20%, and a Rayleigh number varying from 104 to 106. Five types of nanoparticles, Cu, Ag, CuO, Al2O3, and TiO2 are taken into consideration. The results show that the average heat transfer rate from highest to lowest is for Ag, Cu, CuO, Al2O3, and TiO2. The results also show that for the particle radius generally used in practice (β=0.1 or β=0.02), the average heat transfer rate increases to 44% for Ra=104, to 53% for Ra=105, and to 54% for Ra=106 if the special case of θ=90 deg, which also produces the minimum heat transfer rates, is not taken into consideration. As for θ=90 deg, the heat transfer enhancement reaches 21% for Ra=104, 44% for Ra=105, and 138% for Ra=106. The average heat transfer rate shows an increasing trend with an increasing inclination angle, and a peak value is detected. Beyond the peak point, the foregoing trend reverses and the average heat transfer rate decreases with a further increase in the inclination angle. Maximum heat transfer takes place at θ=45 deg for Ra=104 and at θ=30 deg for Ra=105 and 106.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3711
Author(s):  
Asifa ◽  
Talha Anwar ◽  
Poom Kumam ◽  
Zahir Shah ◽  
Kanokwan Sitthithakerngkiet

In this modern era, nanofluids are considered one of the advanced kinds of heat transferring fluids due to their enhanced thermal features. The present study is conducted to investigate that how the suspension of molybdenum-disulfide (MoS2) nanoparticles boosts the thermal performance of a Casson-type fluid. Sodium alginate (NaAlg) based nanofluid is contained inside a vertical channel of width d and it exhibits a flow due to the movement of the left wall. The walls are nested in a permeable medium, and a uniform magnetic field and radiation flux are also involved in determining flow patterns and thermal behavior of the nanofluid. Depending on velocity boundary conditions, the flow phenomenon is examined for three different situations. To evaluate the influence of shape factor, MoS2 nanoparticles of blade, cylinder, platelet, and brick shapes are considered. The mathematical modeling is performed in the form of non-integer order operators, and a double fractional analysis is carried out by separately solving Caputo-Fabrizio and Atangana-Baleanu operators based fractional models. The system of coupled PDEs is converted to ODEs by operating the Laplace transformation, and Zakian’s algorithm is applied to approximate the Laplace inversion numerically. The solutions of flow and energy equations are presented in terms of graphical illustrations and tables to discuss important physical aspects of the observed problem. Moreover, a detailed inspection on shear stress and Nusselt number is carried out to get a deep insight into skin friction and heat transfer mechanisms. It is analyzed that the suspension of MoS2 nanoparticles leads to ameliorating the heat transfer rate up to 9.5%. To serve the purpose of achieving maximum heat transfer rate and reduced skin friction, the Atangana-Baleanu operator based fractional model is more effective. Furthermore, it is perceived that velocity and energy functions of the nanofluid exhibit significant variations because of the different shapes of nanoparticles.


Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 623
Author(s):  
Firas A. Alwawi ◽  
Mohammed Z. Swalmeh ◽  
Amjad S. Qazaq ◽  
Ruwaidiah Idris

The assumptions that form our focus in this study are water or water-ethylene glycol flowing around a horizontal cylinder, containing hybrid nanoparticles, affected by a magnetic force, and under a constant wall temperature, in addition to considering free convection. The Tiwari–Das model is employed to highlight the influence of the nanoparticles volume fraction on the flow characteristics. A numerical approximate technique called the Keller box method is implemented to obtain a solution to the physical model. The effects of some critical parameters related to heat transmission are also graphically examined and analyzed. The increase in the nanoparticle volume fraction increases the heat transfer rate and liquid velocity; the strength of the magnetic field has an adverse effect on liquid velocity, heat transfer, and skin friction. We find that cobalt nanoparticles provide more efficient support for the heat transfer rate of aluminum oxide than aluminum nanoparticles.


2021 ◽  
Vol 13 (6) ◽  
pp. 168781402110240
Author(s):  
Rehan Ali Shah ◽  
Hidayat Ullah ◽  
Muhammad Sohail Khan ◽  
Aamir Khan

This paper investigates the enhanced viscous behavior and heat transfer phenomenon of an unsteady two di-mensional, incompressible ionic-nano-liquid squeezing flow between two infinite parallel concentric cylinders. To analyze heat transfer ability, three different type nanoparticles such as Copper, Aluminum [Formula: see text], and Titanium oxide [Formula: see text] of volume fraction ranging from 0.1 to 0.7 nm, are added to the ionic liquid in turns. The Brinkman model of viscosity and Maxwell-Garnets model of thermal conductivity for nano particles are adopted. Further, Heat source [Formula: see text], is applied between the concentric cylinders. The physical phenomenon is transformed into a system of partial differential equations by modified Navier-Stokes equation, Poisson equation, Nernst-Plank equation, and energy equation. The system of nonlinear partial differential equations, is converted to a system of coupled ordinary differential equations by opting suitable transformations. Solution of the system of coupled ordinary differential equations is carried out by parametric continuation (PC) and BVP4c matlab based numerical methods. Effects of squeeze number ( S), volume fraction [Formula: see text], Prandtle number (Pr), Schmidt number [Formula: see text], and heat source [Formula: see text] on nano-ionicliquid flow, ions concentration distribution, heat transfer rate and other physical quantities of interest are tabulated, graphed, and discussed. It is found that [Formula: see text] and Cu as nanosolid, show almost the same enhancement in heat transfer rate for Pr = 0.2, 0.4, 0.6.


Sign in / Sign up

Export Citation Format

Share Document