Adaptive torsional vibration active control for hybrid electric powertrains during start-up based on model prediction

Author(s):  
Xing Chen ◽  
Dan Peng ◽  
Jibin Hu ◽  
Cheng Li ◽  
Shuili Zheng ◽  
...  

Torsional vibration occurs when the hybrid vehicle transmission system is influenced by the multiple excitations and the dynamic loads caused by mode switching. Torsional vibrations of transmission system directly affect the stability, reliability, and safety of vehicles. In order to suppress the torsional vibration, this paper studied the active vibration control algorithm for the hybrid powertrains under rapid acceleration. Primarily, the architecture and the dynamic modeling of the drive system of the hybrid vehicle was built. Moreover, the hybrid control system including engine controller, motor controller and transmission controller was proposed. Furthermore, an adaptive active control controller was constructed to solve the torsional vibration problem. And model prediction control (MPC) and Butterworth filter control were combined into the controller. Finally, the efficacy of this active method for vibration reduction under start-up conditions was simulated. The simulation results showed that the torsional vibration of the transmission system was reduced by 96%–99% with external interference and the system stabilization time was advanced by 93% without external interference. The adaptive control algorithm suggested in this paper effectively suppressed the torsional vibration of hybrid electric vehicles (HEV) when accelerating in pure electric mode, without affecting vehicles’ dynamic performance.

2018 ◽  
Vol 9 (1) ◽  
pp. 34 ◽  
Author(s):  
Biqing Zhong ◽  
Bin Deng ◽  
Han Zhao

Hybrid electric vehicles (HEV) might cause new noise vibration and harshness (NVH) problems, due to their complex powertrain systems. Therefore, in this paper, a new longitudinal dynamic simulation model of a series-parallel hybrid electric bus with an active torsional vibration control module is proposed. First, the schematic diagrams of the simulation model architecture and the active control strategy are given, and the dynamic models of the main components are introduced. Second, taking advantage of the characteristics of hybrid systems, a method of determining the key dynamic parameters by a bench test is proposed. Finally, in a typical bus-driving cycle for Chinese urban conditions, time domain and frequency domain processing methods are used to analyze vehicle body jerk, fluctuation of rotational speed, and torsional angle of the key components. The results show that the active control method can greatly improve the system’s torsional vibration performance when switching modes and at resonance.


Author(s):  
Wenfeng Li ◽  
Xiaomin Dong ◽  
Jun Xi ◽  
Xiong Deng ◽  
Kaiyuan Shi ◽  
...  

In this research effort, an innovative magneto-rheological variable stiffness and damping torsional vibration absorber (MR-VSDTVB) is proposed, and independent variable damping control and independent variable stiffness control are adopted to suppress the torsional vibration of the transmission system. MR-VSDTVB, based on semi-active control principle, exhibits a compact structure and integrates with magneto-rheological technology. First, the concept of MR-VSDTVB is discussed, and the output torque characteristic of MR-VSDTVB is analytically developed. Then, a prototype is fabricated and tested. A transmission system with MR-VSDTVB is proposed to verify the MR-VSDTVB's effectiveness. The structure and inherent characteristics of the transmission system are analyzed theoretically. Finally, an experimental setup of transmission system with MR-VSDTVB is built. Experimental results indicate that when torsional stiffness of MR-VSDTVB changes, a frequency shift phenomenon occurs; moreover, when torsional damping of MR-VSDTVB changes, the response amplitude of the experimental setup changes regularly; And finally, the on-off control test validates the effectiveness of semi-active control on the torsional vibration suppression of the transmission system. The above results verify the effectiveness of MR-VSDTVB in suppressing the torsional vibration of the transmission system. These findings are expected to expand the application of magneto-rheological technology and variable stiffness and variable damping technology in torsional vibration of transmission systems.


2021 ◽  
Vol 11 (4) ◽  
pp. 1846
Author(s):  
Yanzhao Su ◽  
Minghui Hu ◽  
Jin Huang ◽  
Ling Su ◽  
Datong Qin

Experimental research is essential in the development of a hybrid electric vehicle. In this study, a bench test was conducted for a compound power-split hybrid electric vehicle (PSHEV) to analyze the real dynamic characteristics of its components and the factors of system shock and vibration during the engine start-up process. Firstly, the mode switching process with an engine start-up was divided into four stages by the lever method. The basic control strategy of mode switching with engine start-up was formulated and tested on a bench test platform. Secondly, based on the bench test data, the output characteristics of the battery motor, engine, and driveshaft were analyzed in detail. The main variable parameters of the engine control unit were investigated in the engine start-up process. Ultimately, the results showed that the engine’s pulsating torque was the main reason for system jerk and vibration during the engine start-up process, and the excessive intake manifold pressure before the engine’s ignition was one of the main reasons for the large output torque ripple. When initiating the electric engine starting process, the jerk and vibration presented a wide fluctuation. The maximum value of the equivalent jerk was 92.12 m/s3, and the maximum value of the absolute value of the vibration acceleration was 4.077 m/s2.


2021 ◽  
Author(s):  
Hui Liu ◽  
Wei Zhang ◽  
Xun Zhang ◽  
Zhen Wang ◽  
Pengfei Yan

Abstract The high-power electromechanical transmission(EMT) system is a typical dual-mode hybrid power transmission system. The torque fluctuation of internal combustion engine causes serious shock and vibration problems of EMT. It is an important way to improve the life and smoothness of EMT system by using high dynamic regulation of motor torque to suppress the torsional resonance amplitude. Firstly, a lumped parameter rotational dynamic model of multi degree of freedom EMT system is established, and the inherent torsional vibration characteristics and dynamic coupling mechanism of the system are analyzed. Secondly, based on the synchronous response of the two motors in the open-loop state, a master-slave coupling EMT torsional active control strategy is proposed, and a speed feedback proportional differential control algorithm is designed. Then, the influence of control parameters, including lever coefficient Kab, proportional coefficient Kp and differential coefficient Kd, on the vibration characteristics of the system is analyzed. Finally, the calculation is carried out in the frequency domain and compared with the optimal modal control algorithm. The results show that the lever coefficient Kab and differential coefficient Kd of master-slave control can change the natural frequency of torsional vibration of the system, thus significantly changing the vibration response of the system. Selecting appropriate control parameters can achieve peak clipping of EMT torsional resonance amplitude, which is also of great significance to improve the NVH performance of the system.


Author(s):  
Wei Zhang ◽  
Hui Liu ◽  
Xun Zhang ◽  
Yunhao Wu ◽  
Pu Gao ◽  
...  

Load jumping and mode transitions both cause the unstable dynamic states for compound power-split hybrid Unmanned Ground Vehicles (UGVs), and these phenomena lead to vibrations of the transmission system and longitudinal buffeting of the vehicle. This study presents a feed-forward compensation control strategy for load jumping and mode transitions to reduce the corresponding torsional vibration in hybrid UGVs. The proposed method injects an appropriate harmonic current into a permanent magnet synchronous motor (PMSM) to generate a harmonic torque that is opposite to the load torque, which improves the dynamic response quality of the vehicle load. First, the multimode structure of a hybrid UGV and mode switching vibration and shock are investigated, as well as a feed-forward compensate control architecture is proposed. Second, two models are established the PMSM dynamic model based on the electromagnetic coupling principle and a 2-degree-of-freedom torsional vibration model of transmission system by simplifying the vehicle system. Third, the harmonic current injection method is proposed, and the harmonic current equation is derived. Based on the field-oriented control algorithm, a double closed-loop controller is designed for the torque and speed of the PMSM, and the internal model control method is applied to design the current controller. The simulation results show that the proposed strategy effectively suppresses jerk and that the harmonics current transfers the energy from the mechanical vibrations of the system into electric power fluctuations.


Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2989 ◽  
Author(s):  
Yang ◽  
Zhang ◽  
Zhang ◽  
Tian ◽  
Hu

Torque coordinated control of the relevant power sources has an important impact on the vehicle dynamics and driving performance during the mode transition of the hybrid electric vehicles(HEVs). Considering the dynamic impact problem caused by mode transition, this paper, based upon the structural features of axially paralleled hybrid power system, introduces the bumpless mode switching control theory to analyze multi-mode transition. Firstly, the state transition process is abstracted as the state space transition problem of hybrid system. Secondly the mode transition is divided into four sub-states, and the state model of each sub-state is established. Thirdly, taking the cost functions as the optimization objective, the state switching process is solved, and the control vectors of each switching process are obtained. Simulation and experimental results show that the proposed control strategy can effectively suppress torque fluctuation, avoid longitudinal acceleration impact, and improve driving performance.


2017 ◽  
Vol 140 (2) ◽  
Author(s):  
Wander Gustavo Rocha Vieira ◽  
Fred Nitzsche ◽  
Carlos De Marqui

In recent decades, semi-active control strategies have been investigated for vibration reduction. In general, these techniques provide enhanced control performance when compared to traditional passive techniques and lower energy consumption if compared to active control techniques. In semi-active concepts, vibration attenuation is achieved by modulating inertial, stiffness, or damping properties of a dynamic system. The smart spring is a mechanical device originally employed for the effective modulation of its stiffness through the use of semi-active control strategies. This device has been successfully tested to damp aeroelastic oscillations of fixed and rotary wings. In this paper, the modeling of the smart spring mechanism is presented and two semi-active control algorithms are employed to promote vibration reduction through enhanced damping effects. The first control technique is the smart-spring resetting (SSR), which resembles resetting control techniques developed for vibration reduction of civil structures as well as the piezoelectric synchronized switch damping on short (SSDS) technique. The second control algorithm is referred to as the smart-spring inversion (SSI), which presents some similarities with the synchronized switch damping (SSD) on inductor technique previously presented in the literature of electromechanically coupled systems. The effects of the SSR and SSI control algorithms on the free and forced responses of the smart-spring are investigated in time and frequency domains. An energy flow analysis is also presented in order to explain the enhanced damping behavior when the SSI control algorithm is employed.


2013 ◽  
Vol 753-755 ◽  
pp. 2674-2678
Author(s):  
Kun Yang ◽  
Cai Jun Liu ◽  
Shu Min Liu

Based on the situation that the hydraulic position servo system is easily influenced by the external interference and the parameters of which are different with time-varying, the fuzzy control can soften the buffeting and the sliding algorithm has no the same problems as the hydraulic position servo system, a brandly-new fuzzy sliding control algorithm is designed. In the simulation process, within the parameters of simulated time-varying and outside strong interference, the results show that the hydraulic servo system based on fuzzy sliding mode control algorithm has a greater resistance to internal and external interference and time-varying parameters.


Author(s):  
Young-Tai Choi ◽  
Norman M. Wereley ◽  
Gregory J. Hiemenz

Novel semi-active vibration controllers are developed in this study for magnetorheological (MR) fluid-based vibration control systems, including: (1) a band-pass frequency shaped semi-active control algorithm, (2) a narrow-band frequency shaped semi-active control algorithm. These semi-active vibration control algorithms designed without resorting to the implementation of an active vibration control algorithms upon which is superposed the energy dissipation constraint. These new Frequency Shaped Semi-active Control (FSSC) algorithms require neither an accurate damper (or actuator) model, nor system identification of damper model parameters for determining control current input. In the design procedure for the FSSC algorithms, the semi-active MR damper is not treated as an active force producing actuator, but rather is treated in the design process as a semi-active dissipative device. The control signal from the FSSC algorithms is a control current, and not a control force as is typically done for active controllers. In this study, two FSSC algorithms are formulated and performance of each is assessed via simulation. Performance of the FSSC vibration controllers is evaluated using a single-degree-of-freedom (DOF) MR fluid-based engine mount system. To better understand the control characteristics and advantages of the two FSSC algorithms, the vibration mitigation performance of a semi-active skyhook control algorithm, which is the classical semi-active controller used in base excitation problems, is compared to the two FSSC algorithms.


Sign in / Sign up

Export Citation Format

Share Document