An experimental assessment of combustion and performance characteristics of a spark ignition engine fueled with co-fermentation biogas and gasoline dual fuel

Author(s):  
Ümit Ağbulut ◽  
Mustafa Aydin ◽  
Mustafa Karagöz ◽  
Emrah Deniz ◽  
Burak Çiftçi

Natural gas, biogas and alcohols are alternative fuels for spark ignition engines which can be used for reducing exhaust emissions and improving performance metrics. At the first stage of the study, a pilot scale biogas system was built, and biogas was produced from a mixture of manure and water called slurry, consisting of 40% cattle manure, 35% water, 17% whey and 8% poultry manure by co-fermentation method. Scrubbing and desulfurization were applied to remove the harmful gasses (CO2, H2S) from the produced biogas in two stages. In the end of the purification process, biogas with a CH4 content of 51%, 57% and 87% was produced. In the second stage, these biogas fuels were used in an SI engine, and their impacts on performance and combustion characteristics were investigated experimentally. A 4-cylinder, 4-stroke, water cooled SI engine with an 11:1 compression ratio was used in the experiments. Tests were conducted at various loads and constant speed. Results showed that daily amount of mean biogas production has reached 1.6 m3/day and biogas methane content has reached 72%. In engine tests, as the methane ratio in biogas increases, cylinder pressure and exhaust temperature values increase and brake specific fuel consumption decreases.

2003 ◽  
Author(s):  
K. Majmudar ◽  
K. Aung

The use of alternative fuels such as methanol and ethanol in spark-ignition (SI) engines is beneficial to the environment as it reduces emissions of pollutants such as NOx from these engines with slight penalty on the performance. This paper investigated the use of liquid fuel blends such as ethanol/gasoline blend in an SI engine by numerical simulations. The numerical simulations were based on the models of finite heat release, cylinder heat transfer, pumping losses, and friction losses. Simulations were carried out to evaluate the effects of compression ratio, equivalence ratio, ignition timing, and engine speed on the performance of the SI engine. The results of the simulations were compared with experimental data from the literature to validate the simulations. Good agreements between the computed and experimental results were obtained. The results showed that the current model could satisfactorily predict the performance of an SI engine fueled by liquid fuel blends.


2020 ◽  
Vol 10 (2) ◽  
pp. 1-16
Author(s):  
Eiman Ali

Modeling and simulation of process performance has been conducted around the use of theIraqi associated petroleum gas as fuel for the spark-ignition engine. The study included astatistical evaluation of the effect of each component on the total properties of the gas.Finally, the gas was tested as a possible fuel for the spark-ignition engine from theemission point of view. This was done numerically using commercial software wellestablished and verified for modeling the operation and performance of spark-ignitionengines.The study was conducted on Ricardo E6/T variable compression ratio engine. The range ofthe speed studied was 1000-3000 rpm and was limited to a lean range 0.8-0.95. It was alsofound that the presence of Methane in higher quantity helped in improving the calorificvalue (on a mass basis) but at the cost of gas density. The presence of higher carbon valuegasses did not help improve the fuel heating value.The highest negative impact on the heating value is CO, H2S, and C2H6 respectively. Thestudy also showed that the associated gas can be used as a fuel after removing sulfur fromit.


Author(s):  
V. Matham ◽  
K. Majmudar ◽  
K. Aung

The use of alternative fuels such as natural gas (methane) in spark-ignition (SI) engines is beneficial to the environment as it reduces emissions of pollutants such as NOx from these engines with slight penalty on the performance. This paper investigated the use of methane and hydrogen/methane mixtures in an SI engine by numerical simulations. The numerical simulations were based on the models of finite heat release, cylinder heat transfer, pumping losses, and friction losses. Simulations were carried out to evaluate the effects of compression ratio, equivalence ratio, ignition timing, and engine speed on the performance of the SI engine. The results showed that the current model could satisfactorily predict the performance of an SI engine fueled by gaseous fuels.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 4034
Author(s):  
Paolo Iodice ◽  
Massimo Cardone

Among the alternative fuels existing for spark-ignition engines, ethanol is considered worldwide as an important renewable fuel when mixed with pure gasoline because of its favorable physicochemical properties. An in-depth and updated investigation on the issue of CO and HC engine out emissions related to use of ethanol/gasoline fuels in spark-ignition engines is therefore necessary. Starting from our experimental studies on engine out emissions of a last generation spark-ignition engine fueled with ethanol/gasoline fuels, the aim of this new investigation is to offer a complete literature review on the present state of ethanol combustion in last generation spark-ignition engines under real working conditions to clarify the possible change in CO and HC emissions. In the first section of this paper, a comparison between physicochemical properties of ethanol and gasoline is examined to assess the practicability of using ethanol as an alternative fuel for spark-ignition engines and to investigate the effect on engine out emissions and combustion efficiency. In the next section, this article focuses on the impact of ethanol/gasoline fuels on CO and HC formation. Many studies related to combustion characteristics and exhaust emissions in spark-ignition engines fueled with ethanol/gasoline fuels are thus discussed in detail. Most of these experimental investigations conclude that the addition of ethanol with gasoline fuel mixtures can really decrease the CO and HC exhaust emissions of last generation spark-ignition engines in several operating conditions.


2019 ◽  
Vol 26 (3) ◽  
pp. 31-38
Author(s):  
Wojciech Gis ◽  
Maciej Gis ◽  
Piotr Wiśniowski ◽  
Mateusz Bednarski

Abstract Limiting emissions of harmful substances is a key task for vehicle manufacturers. Excessive emissions have a negative impact not only on the environment, but also on human life. A significant problem is the emission of nitrogen oxides as well as solid particles, in particular those up to a diameter of 2.5 microns. Carbon dioxide emissions are also a problem. Therefore, work is underway on the use of alternative fuels to power the vehicle engines. The importance of alternative fuels applies to spark ignition engines. The authors of the article have done simulation tests of the Renault K4M 1.6 16v traction engine for emissions for fuels with a volumetric concentration of bioethanol from 10 to 85 percent. The analysis was carried out for mixtures as substitute fuels – without doing any structural changes in the engine's crankshafts. Emission of carbon monoxide, carbon dioxide, hydrocarbons, oxygen at full throttle for selected rotational speeds as well as selected engine performance parameters such as maximum power, torque, hourly and unit fuel consumption were determined. On the basis of the simulation tests performed, the reasonableness of using the tested alternative fuels was determined on the example of the drive unit without affecting its constructions, in terms of e.g. issue. Maximum power, torque, and fuel consumption have also been examined and compared. Thus, the impact of alternative fuels will be determined not only in terms of emissions, but also in terms of impact on the parameters of the power unit.


2018 ◽  
Vol 21 (3) ◽  
pp. 368-373
Author(s):  
Kadhim Fadhil Nasir

The consequence of mixing pure ethanol with gasoline on the pollution and performance of SI engine are investigated experimentally in the existent study. The SI engine that employed in the experiment is a single cylinder four stroke. Analysis is carried out for engine operation parameter, CO2, CO and unburned HC productions. The measurements are recorded for several engine speeds from 1500 – 3000 rpm with load and ethanol addition of (0E, 10E, 20E, 30E, 40E, 50E,). The results displayed increasing in brake power, and brake thermal efficiency while the brake specific fuel consumption decreases when the ethanol- gasoline blends fuel increases. Also it was found that CO, HC, and CO2 concentrations decrease when the ethanol- gasoline increases. The best results obtained in the study is for the blend of E-50.


2019 ◽  
pp. 146808741985910 ◽  
Author(s):  
Guillermo Rubio-Gómez ◽  
Lis Corral-Gómez ◽  
David Rodriguez-Rosa ◽  
Fausto A Sánchez-Cruz ◽  
Simón Martínez-Martínez

In the last few years, increasing concern about the harmful effects of the use of fossil fuels in internal combustion engines has been observed. In addition, the limited availability of crude oil has driven the interest in alternative fuels, especially biofuels. In the context of spark ignition engines, bioalcohols are of great interest owing to their similarities and blend capacities with gasoline. Methanol and ethanol have been widely used, mainly due to their knocking resistance. Another alcohol of great interest is butanol, thanks to its potential of being produced as biofuel and its heat value closer to gasoline. In this study, a comparative study of gasoline–alcohol blend combustion, with up to 20% volume, with neat gasoline has been carried out. A single-cylinder, variable compression ratio, Cooperative Fuel Research-type spark ignition engine has been employed. The comparison is made in terms of fuel conversion efficiency and flame development angle. Relevant information related to the impact in the combustion process of the use of the three main alcohols used in blends with gasoline has been obtained.


Author(s):  
Hailin Li ◽  
Ghazi A. Karim ◽  
A. Sohrabi

The operation of spark ignition (SI) engines on lean mixtures is attractive, in principle, since it can provide improved fuel economy, reduced tendency to knock, and extremely low NOx emissions. However, the associated flame propagation rates become degraded significantly and drop sharply as the operating mixture is made increasingly leaner. Consequently, there exist distinct operational lean mixture limits beyond which satisfactory engine performance cannot be maintained due to the resulting prolonged and unstable combustion processes. This paper presents experimental data obtained in a single cylinder, variable compression ratio, SI engine when operated in turn on methane, hydrogen, carbon monoxide, gasoline, iso-octane, and some of their binary mixtures. A quantitative approach for determining the operational limits of SI engines is proposed. The lean limits thus derived are compared and validated against the corresponding experimental results obtained using more traditional approaches. On this basis, the dependence of the values of the lean mixture operational limits on the composition of the fuel mixtures is investigated and discussed. The operational limit for throttled operation with methane as the fuel is also established.


Sign in / Sign up

Export Citation Format

Share Document