Influence of Fly Ash and Emery based particulate reinforced AA7075 surface composite processed through friction stir processing

Author(s):  
K. Suganeswaran ◽  
R. Parameshwaran ◽  
R. Sathiskumar ◽  
T. Ram Prabhu ◽  
N. Nithyavathy

The novel friction stir technology is adopted in modern automotive industries to meet the desired properties like hardness, impact toughness and tribological behaviour over the conventional techniques like stir casting, compo casting, squeeze casting, electroplating and infiltration methods. AA7075 surface composites fabricated with different volume fractions of fly ash and emery particles is said to enhance the aforementioned properties. The composites are processed through friction stir process (rotational speed −1200 rpm, transverse speed – 56 mm/min, tool tilt angle – 2 °). During characterization, the Microstructural examination of surface composites depicts fine and homogenous distribution of reinforcements in the friction stir process region owing to severe plastic deformation and dynamic recrystallization process. Substantially, good interface is formed between the reinforcement particulates and base substrate. Inclusion of Fe3O4, Al2O3 and SiO2 constituents through fly ash and emery reinforcements associated with the homogenous dispersion strengthening mechanism favours for the superior hardness of surface hybrid composite specimen 50E50FA. Decremented grain size and load bearing capacity of the reinforcements is beneficial for the crack propagation resistance that enhances the impact toughness behaviour (17.4 J/cm2) of the same specimen. Wear rate of the specimens are evaluated through pin on disc tribometer. The decrease in the wear rate of hard specimen 50E50FA is observed due to the reduced contact area between its surface and counter disc. The morphology of worn specimens using SEM analysis shows the combined abrasive and adhesive wear as the worn mechanism.

Author(s):  
Pragya Saxena ◽  
Arunkumar Bongale ◽  
Satish Kumar ◽  
Priya Sachin Jadhav

Abstract The surface composites of aluminum alloys have a higher scope of applications encountering surface interactions in the aerospace, automobile, and other industries compared to the base aluminum alloys. The friction stir process (FSP) is recently the preferred method to prepare aluminum-based surface composites due to its capability to produce improved physical properties and refined microstructure at the surface. The study examines the Al6061 alloy-based surface composite fabricated by FSP for their wear behavior and microstructure. In this study, the Al6061 alloy-based hybrid surface composites are prepared with varying weight% of copper and graphite microparticles mixture as reinforcement by FSP with two tools having unique pin profiles, i.e., threaded cylindrical and plain cylindrical. These prepared composites are investigated for the dry sliding wear test on a pin-on-disc test set-up. The experiments are designed using the L9 orthogonal array and analyzed by the Taguchi approach to obtain the influence of disc speed, load, and reinforcement weight% on wear rate. The significant parameters influencing the wear rate of the samples tested are obtained using ANOVA. Later the effects of the friction stir process and the wear tests on the microstructure of the workpieces are investigated using FE-SEM/EDS tests. It is concluded that the decrease in wear rate with the rise in reinforcement weight% (Cu + graphite) from 2% to 6%. The load has the maximum effect on the wear rate for the samples prepared by threaded cylindrical FSP tool pin profile, while reinforcement weight% affects significantly the wear rate of the samples prepared by FSP with plain cylindrical pin profile tool.


Coatings ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 830 ◽  
Author(s):  
Namdev Ashok Patil ◽  
Srinivasa Rao Pedapati ◽  
Othman Bin Mamat ◽  
Abdul Munir Hidayat Syah Lubis

Friction stir processing (FSP) has evolved as an important technique in fabrication of metal matrix composites. The surface properties enhancement is obtainable by insertion of desired discontinuous particular reinforcements into base alloy using FSP. Despite having high specific strength, more applications of Al alloys are restricted due to their poor surface properties under various loading conditions. In this study, the main focus is on enhancing the microhardness and wear properties of Al 7075 base alloy by means of uniform dispersion of silicon carbide and graphite (SiC/Gr) nano particles into the base alloy using the FSP technique. The tool rotational speed (w: 500, 1000, 1500 rpm), tool traverse speed (v: 20, 30, 40 mm/min), reinforcement particles hybrid ratio (HR: 60:40, 75:25, 90:10) and volume percentage (vol%: 4%, 8%, 12%) are used as independent parameters. The effect of these parameters on microstructure, micro hardness and wear properties of surface composites are studied in detail. For desired wear rate and microhardness as responses, the aforementioned independent parameters are optimized using response surface methodology (RSM). The significance of factors and their interactions for maximizing hardness and minimizing wear rate and coefficient of friction (COF) were determined. Analysis of variance (ANOVA) for responses has been carried out, and the models were found to be significant in all three responses. The minimum wear rate of 0.01194 mg/m was obtained for parameters w 1500 rpm, v 40 mm/min, HR 60:40, vol% 4 (Run 10). The maximum micro hardness of 300 HV obtained for parameters w 1000 rpm, v 30 mm/min, HR 75:25, vol% 12 (Run 14). The presence and uniform distribution of SiC and Gr into the base alloy was confirmed through field-emission scanning electron microscopy (FESEM) imaging, energy-dispersive X-ray spectroscopy (EDX) and mapping tests. The wear rate and COF decreased significantly due to graphitized mechanically mixed layer developed at the sliding contacts. The microhardness of resultant composites observed to be dependent on effect of the independent parameters on extent of inherent precipitates dissolution and grain size strengthening in the resultant materials.


Joining processes has been the heart of the manufacturing processes. Welding has played an important part in joining processes since its inception. Friction Stir Welding (FSW) has given promising results especially in the case of aluminum alloys. In the present paper, dissimilar aluminum alloy heat-treatable AA6082 T651and non-heat treatable AA 5083 O were friction stir welded as per design matrix generated according to the rotatable central composite design of response surface methodology. Impact toughness was measured from samples of welded joints. The impact toughness was mapped in terms of FSW parameters and the regression equation is generated. The response surfaces and contour plots are drawn and interpreted. The input parameters are optimized to achieve maximum impact strength. Confirmation runs were performed and found results were found close to the optimized values. The present research is useful for further augmentation of the FSW process of aluminum alloy.


2018 ◽  
Vol 140 (3) ◽  
Author(s):  
Titus Thankachan ◽  
K. Soorya Prakash ◽  
Mujiburrahman Kamarthin

Copper-based surface composite dispersed with varying fractions of hybrid reinforcement was fabricated through friction stir processing (FSP). Hybrid reinforcement particles were prepared from aluminum nitride (AIN) and boron nitride (BN) particles of equal weight proportion. Based on design of experiments, wear characteristics of the developed copper surface composites were estimated using pin-on-disk tribometer. Experimental parameters include volumetric fraction of hybrid reinforcement particles (5, 10, and 15 vol %), load (10, 20, 30 N), sliding velocity (1, 1.5, and 2 m/s), and sliding distance (500, 1000, and 1500 m). Microstructural characterization demonstrated uniform dispersion of hybrid reinforcement particles onto the copper surface along with good bonding. Hardness of the developed surface composites increased with respect to increase in hybrid particle dispersion when compared with copper substrate while a reduction in density values was revealed. Analysis on wear rate values proved that wear rate decreased with increase in hybrid particle dispersion and increased with increase in load, sliding velocity, and distance. Analysis of variance (ANOVA) specified load as the most significant factor over wear rate values followed by volume fractions of particle dispersion, sliding velocity, and distance. Regression model constructed was found efficient in predicting wear rate values. Analysis of worn out surfaces through scanning electron microscopy (SEM) revealed the transition of severe to mild wear with respect to increase in hybrid reinforcement particle dispersion. A feed forward back propagation algorithm-based artificial neural network (ANN) model with topology 4-7-1 was developed to predict wear rate of copper surface composites based on its control factors.


Author(s):  
Md. Ziyaur Rahman ◽  
Zahid Akhtar Khan ◽  
Arshad Noor Siddiquee ◽  
Mustufa Haider Abidi ◽  
Mohamed K Aboudaif ◽  
...  

Abstract A mixture of Titanium and silicon-carbide powders was embedded in the AA5083 matrix by Friction Stir Processing (FSP). Experiments were performed as per Taguchi L8 orthogonal array, and the effect of reinforcement on hot strength (at 100oC), processed zone (PZ) geometry, and microstructure were investigated. The effect of PZ geometry on the surface properties was also analyzed. The effect of heating the tensile test specimens to 540ºC on the strength at 100oC was also separately investigated. It was observed that surface hardness was significantly enhanced by FSP, and the highest mean hardness of 90.4 HV was observed. Furthermore, it was observed that the surface properties also significantly depend on PZ geometry. From experimental results, it was found that the specimens with the lowest width to depth ratio bears the highest hardness and vice versa. A clear effect of parameters was evident on the geometry of processed zones with a deep bowl, and shallow cup-shaped zones were formed with smaller and larger shoulder diameters, respectively. The samples were processed at 355 rpm, 63 mm/min, 17 mm shoulder, and 355 rpm, 80 mm/min. The 20 mm shoulder showed high tensile strength 292 MPa and 294 Mpa, respectively. The strength of these samples did not reduce much even after heating to 540oC.


Sign in / Sign up

Export Citation Format

Share Document