scholarly journals Experimental study on vibration transmissibility of Pre-loaded XPE and PE packaging cushioning material

2021 ◽  
Vol 49 (4) ◽  
pp. 962-968
Author(s):  
Péter Csavajda ◽  
Péter Böröcz

Most of the shipped products are sensitive against shock and vibration events during the distribution. Various cushioning materials are usually used to prevent the product damages. During the design process the protective packaging system is developed by the engineers based on the cushion and vibration transmissibility features (ie. cushion curve) of the material used. However, after the assembly of the packaged-product, these are stored for various long periods in warehouse. During this time the products pre-load the cushioning material and its parameters can be changed. The main goal of this study is to evaluate the vibration transmissibility of PE and XPE cushioning material at varied storage (pre-loaded) time and static load conditions. Four different kinds of duration (1 hour, 10 hours, 100 hours and 1000 hours) were used for the pre-loading period at three different static loads (3.488 kPa, 4.651 kPa, and 6.976 kPa), and then at 0.5 oct/min sine sweep vibration the peak frequencies of response and vibration transmissibility, and damping ratio were determined. The results show that the effect of pre-loading is minimal by PE material, but can influence the resonance frequencies by XPE cushioning material. The findings of this study help the packaging engineers to understand better the mechanism of these cushioning materials and to design suitable protective packaging systems.

2021 ◽  
Vol 383 ◽  
pp. 542-553
Author(s):  
Elías A. Roces-Alonso ◽  
Jesús González-Galindo ◽  
José Estaire

Author(s):  
A.A. Komarov ◽  

The practices of hazardous and unique facilities’ construction imply that specific attention is paid to the issues of safety. Threats associated with crash impacts caused by moving cars or planes are considered. To ensure safety of these construction sites it is required to know the potential dynamic loads and their destructive capacity. This article considers the methodology of reducing dynamic loads associated with impacts caused by moving collapsing solids and blast loads to equivalent static loads. It is demonstrated that practically used methods of reduction of dynamic loads to static loads are based in schematization only of the positive phase of a dynamic load in a triangle forms are not always correct and true. The historical roots of this approach which is not correct nowadays are shown; such approach considered a detonation explosion as a source of dynamic load, including TNT and even a nuclear weapon. Application of the existing practices of reduction of dynamic load to static load for accidental explosions in the atmosphere that occur in deflagration mode with a significant vacuumization phase may cause crucial distortion of predicted loads for the construction sites. This circumstance may become a matter of specific importance at calculations of potential hazard of impacts and explosions in unique units — for instance, in the nuclear plants. The article considers a situation with a plane crash, the building structure load parameters generated at the impact caused by a plane impact and the following deflagration explosion of fuel vapors are determined.


Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1825
Author(s):  
Haitham M. Ahmed ◽  
Hussin A. M. Ahmed ◽  
Mohammed Hefni ◽  
Essam B. Moustafa

In this investigation, aluminium Al-2.5% Mg cast alloy was modified by adding 0.5 Ti and 0.1 B wt % modifiers to investigate their impact on the dynamic behaviour, as well as the mechanical and microstructure properties. The dynamic properties were analysed experimentally using a free vibration impact test and predicted using finite element methods. This study used a high-resolution polarised optical microscope to analyse the microstructure of the studied alloys and X-ray Powder Diffraction (XRD) analysis to determine the developed phases. Microstructure and mechanical properties were mostly enhanced as a result of grain refining during solidification and through the metal segregation process. The microstructure analysis of the modified alloy showed a significant improvement in the grain refinement; hence, the grains were 10 times finer than the cast alloy. The modified Al-2.5% Mg/Ti-B alloy demonstrated reduced inter-granular corrosion (IGC) than the Al-2.5% Mg standard cast alloy. By incorporating Ti-B modifiers into the composition of the cast Al-Mg alloy, the ultimate tensile strength (UTS), strain (ε), and hardness values (HV) were increased by 30.5%, 100%, and 18.18%, respectively. The dynamic properties of the modified alloy showed an enhancement in the resonant (fn) and damping ratio (ζ) by 7% and 68%, respectively. The predicted resonance frequencies of the investigated alloys showed results close to the experimental dynamic tests.


2001 ◽  
Vol 45 (03) ◽  
pp. 216-227
Author(s):  
R. Centeno ◽  
K. S. Varyani ◽  
C. Guedes Soares

An experimental program was performed with hard-chine catamaran models in regular waves. The distance between the demi-hulls of the models was changed to assess its effects on the wave-induced motions. The results allowed the study of some aspects related to catamaran motions, like the interference between the hulls and resonance frequencies. The experimental results are compared with calculations performed with a recently developed code based on a two-dimensional potential flow theory in which viscous forces are included through a cross-flow drag approach. The effect of the hull distance in the heave and pitch motion responses and the importance of the viscous forces in such hull configurations are shown.


2020 ◽  
pp. 107754632094378
Author(s):  
Haiping Liu ◽  
Kaili Xiao ◽  
PengPeng Zhao ◽  
Dongmei Zhu

Stiffness and damping of a structure usually show the opposite change so that the resonant frequency and the static load bearing capacity of a mechanical system often exhibit contradiction. To solve this dilemma, a novel high-damping oscillator which is constructed by a nested diamond structure with the purpose of enhancing the damping property is proposed in this study without reducing the overall systematic stiffness. The mathematical model and geometrical relationships are established at first. And then, the steady-state solutions under base excitation are derived by using the harmonic balance method and further verified by numerical simulation. In addition, the effects of some design parameters on the equivalent damping ratio for the high-damping oscillator are studied to reveal the nonlinear characteristic. Besides, the natural frequency of the nonlinear oscillator is also presented and investigated. By using the displacement transmissibility and comparing with the traditional linear isolator with the same overall stiffness, the vibration suppression performance of the high-damping oscillator is addressed. The obtained calculating results demonstrate that the vibration control performance of the high-damping oscillator outperforms the linear counterpart around resonant frequency. Moreover, the influences of systematic parameters of the high-damping oscillator for the base excitation case on the vibration transmissibility are also discussed, respectively. Finally, an experimental campaign is conducted on an in-house-built test rig to corroborate the accuracy of the analytical solutions of the high-damping oscillation system. The results discussed in this study provide a useful guideline, which can help to design this class of high-damping oscillation system.


2013 ◽  
Vol 482 ◽  
pp. 66-69
Author(s):  
Bin Jia ◽  
Lei Fu ◽  
Yu Zhang ◽  
Yi Lu

Prestressed hollow slab strengthened with CFRP is a new reinforcement method. To study the effect on reinforcement through different carbon fiber paste volume and paste manner, we did the experimental study on flexural capacity under the secondary load conditions with prestressed concrete hollow slab commonly used in engineering. Meanwhile, we also did the contrast analysis of reinforcement effect on the old and new prestressed concrete hollow slab. The results showed that prestressed concrete hollow slab strengthened with CFRP could effectively improve the flexural capacity of the specimen, besides the capacity increasing of the old and new prestressed hollow slab is a little difference, but both of the new and old can meet the engineering design specifications.


2015 ◽  
Vol 22 (s1) ◽  
pp. 141-148 ◽  
Author(s):  
Mi Zhou ◽  
Wancheng Yuan ◽  
Yue Zhang

Abstract The paper focuses on the material mechanics properties of reinforced concrete and steel casing composite concrete under pseudo-static loads and their application in structure. Although elevated pile-group foundation is widely used in bridge, port and ocean engineering, the seismic performance of this type of foundation still need further study. Four scale-specimens of the elevated pile-group foundation were manufactured by these two kinds of concrete and seismic performance characteristic of each specimen were compared. Meanwhile, the special soil box was designed and built to consider soil-pile-superstructure interaction. According to the test result, the peak strength of strengthening specimens is about 1.77 times of the others and the ultimate displacement is 1.66 times of the RC specimens. Additionally, the dissipated hysteric energy capability of strengthening specimens is more than 2.15 times of the others as the equivalent viscous damping ratio is reduced by 50%. The pinching effect of first two specimens is more obvious than latter two specimens and the hysteretic loops of reinforced specimens are more plumpness. The pseudo-static tests also provided the data to quantitatively assessment the positive effect of steel casing composite concrete in aseismatic design of bridge.


Sign in / Sign up

Export Citation Format

Share Document