Effect of standoff distance and area ratio on the performance of circular exhaust ejector using computational fluid dynamics

Author(s):  
L Singh ◽  
SN Singh ◽  
SS Sinha

Numerical investigation is carried out to study the effect of standoff distance and area ratio on mass entrainment of an air–air circular exhaust ejector. Nozzle and mixing tube are the two components of an ejector, and for the present study, circular cross section shape has been chosen. Numerical simulations have been carried out at Reynolds number in the range of 6.85 × 104 and 4.11 × 105. Area ratio is varied between 1.25 < area ratio < 4 and standoff distance is varied from 1 Dnz < standoff distance < 4 Dnz, where Dnz represent the nozzle exit diameter. It is observed that for the ejector configuration with area ratio as 2, 2.25, and 2.5, the mass entrainment characteristics are nearly independent of standoff distance between 1 Dnz to 4 Dnz. For ejector configuration with area ratio below 2, mass entrainment decreases with increase in standoff distance. For ejector configuration with area ratio greater than 2.5, mass entrainment increases with increase in standoff distance for the range investigated and has the tendency to taper off beyond 4 Dnz for most of the area ratios. Effect of change in mixing tube length is also studied. It is seen that the mass entrainment improves with increase in length up to 8 Dnz. Further increase in length does not effect mass entrainment. This study provides important guidelines that can aid in arriving at an optimal design of circular exhaust ejectors.

2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Xuan Zhang ◽  
Taocheng Zhao ◽  
Suchen Wu ◽  
Feng Yao

Although roughness is negligible for laminar flow through tubes in classic fluid mechanics, the surface roughness may play an important role in microscale fluid flow due to the large ratio of surface area to volume. To further verify the influence of rough surfaces on microscale liquid flow and heat transfer, a performance test system of heat transfer and liquid flow was designed and built, and a series of experimental examinations are conducted, in which the microchannel material is stainless steel and the working medium is methanol. The results indicate that the surface roughness plays a significant role in the process of laminar flow and heat transfer in microchannels. In microchannels with roughness characteristics, the Poiseuille number of liquid laminar flow relies not only on the cross section shape of the rough microchannels but also on the Reynolds number of liquid flow. The Poiseuille number of liquid laminar flow in rough microchannels increases with increasing Reynolds number. In addition, the Nusselt number of liquid laminar heat transfer is related not only to the cross section shape of a rough microchannel but also to the Reynolds number of liquid flow, and the Nusselt number increases with increasing Reynolds number.


2016 ◽  
Vol 819 ◽  
pp. 382-391 ◽  
Author(s):  
Nor Azwadi Che Sidik ◽  
Mohammed Raad Abdulwahab

A numerical study using computational fluid dynamics method with an approach of single phase has been presented in order to determine the effects of the concentration of the nanoparticles and flow rate on the convective heat transfer and friction factor in turbulent regime flowing through three different straight channels (straight, circular and triangular) with different Reynolds number (5000 ≤ Re ≤ 20000) using constant applied heat flux. The nanofluid was used consist of Fe3O4 magnetic nanoparticles with average diameter of (13nm) dispersed in water with four volume fraction (0, 0.2, 0.4, 0.6%). The results revealed that as volume fraction and Reynolds number increase Nusselt number increase and the heat transfer rate in circular cross section tube is better than that in square and triangular cross section channels.


Author(s):  
Boualem Laribi ◽  
Abdelkader Youcefi ◽  
Elhacene Matene

This article presents a numerical investigation of the development and the establishment of the flow in the presence of the Etoile flow straightener recommended in ISO 5167 (ISO 5167. Measurement of fluid flow by means of orifice plates, nozzles and venture plates inserted in circular cross-section conduits running full, 2003). The objective of this study is to examine the effectiveness length of the Etoile flow straightener, recommended by ISO 5167 with length of two pipe diameters, on the development and the establishment of the flow. The flow is produced by air in a 100mm pipe diameter and 40D of length with a Reynolds number of 2.5×105. The disturbance is a valve maintained at 100% and 50% open. The flow parameters examined are velocity profile, turbulence intensity profile, and the gyration of the fluid. Several measuring stations upstream and downstream of the unit are done. The code CFD Fluent is used for this simulation. The results obtained are compared according to directives of the standard ISO 5167. However, they show that for position valve 100% open the various lengths of the Etoile flow straightener do not present differences for the three flow parameters. On the other hand, for the valve position 50% open, the Etoile flow straightener with 2D length which presents the best performances according the standard.


2021 ◽  
Vol 8 (3) ◽  
pp. 17-22
Author(s):  
Yeqian Ge ◽  
Qin Deyan ◽  
Wang Hongfang ◽  
Tu Jianhong ◽  
Wang Xuefei ◽  
...  

Non-circular profiled fibers are generally synthetic fibers that have a modified cross-section shape, which are created to mimic natural fibers or to obtain special properties. The shape of the cross-section has great influence on the properties of profiled polyester (PET) fibers and their fabrics. The structure and properties of flat-shaped and hexagonal-shaped profiled PET fibers and ordinary PET fibers, as well as the properties of their knit fabrics were characterized. Experimental results showed that air permeability, heat retention, and wrinkle resilience of profiled PET fabrics were better than that of circular a cross-section PET fiber fabric, while the circular cross-section PET fabric was softer than the profiled PET fiber fabrics.


2013 ◽  
Vol 401-403 ◽  
pp. 852-855
Author(s):  
Gao Hui Su ◽  
Zi Chun Yang ◽  
Feng Rui Sun

The phonon transport in silicon nanowire was simulated by Monte Carlo Method (MCM). The effect on the phonon transport of the boundary reflection mode, cross-section size and cross-section shape was studied. Analysis shows that diffuse reflection can result in phonon accumulation at the circumferential boundary. As the cross-section size decrease, the nonuniformity of the temperature distribution within the cross-section becomes more severe. When the area of the square cross-section silicon nanowire (SCSN) is equal to that of the circular cross-section silicon nanowire (CCSN), the thermal conductivity of them is more close to each other.


1971 ◽  
Vol 45 (1) ◽  
pp. 13-31 ◽  
Author(s):  
W. H. Lyne

The flow in a pipe of circular cross-section which is coiled in a circle is studied, the pressure gradient along the pipe varying sinusoidally in time with frequency ω. The radius of the pipeais assumed small in relation to the radius of curvature of its axisR. Of special interest is the secondary flow generated by centrifugal effects in the plane of the cross-section of the pipe, and an asymptotic theory is developed for small values of the parameter β = (2ν/ωa2)½, where ν is the kinematic viscosity of the fluid. The secondary flow is found to be governed by a Reynolds number$R_s = \overline{W}^2a/R \omega\nu$, where$\overline{W}$is a typical velocity along the axis of the pipe, and asymptotic theories are developed for both small and large values of this parameter. For sufficiently small values of β it is found that the secondary flow in the interior of the pipe is in the opposite sense to that predicted for a steady pressure gradient, and this is verified qualitatively by an experiment described at the end of the paper.


2017 ◽  
Vol 13 (2) ◽  
pp. 149-155
Author(s):  
Soňa Medvecká ◽  
Oľga Ivánková ◽  
Marek Macák

Abstract Analysis of wind flow acting upon high-rise buildings is a very common topic. This paper deals with experiment in the Boundary Layer Wind Tunnel (BWLT) in Bratislava and comparison with the computational fluid dynamics (CFD) simulation and values given in the Eurocode. The analyzed object was the model of building with circular cross section (cylinder). External wind pressure coefficients were compared in three height levels of model.


1986 ◽  
Vol 108 (1) ◽  
pp. 40-47 ◽  
Author(s):  
E. M. Sparrow ◽  
G. M. Chrysler

Experiments were performed to determine the local heat transfer characteristics of bends of circular cross section to which fluid was delivered either via a sharp-edged inlet or via a hydrodynamic development tube. The naphthalene sublimation technique, a mass transfer method, was used to facilitate the experiments. Bends subtending turning angles of 30, 60, and 90 deg were investigated, and the Reynolds number was varied between 5000 and 100,000. It was found that the local heat transfer coefficients at the outside of the bend were, for the most part, larger than those at the inside of the bend, but the deviations decreased as the Reynolds number increased. The streamwise distributions of the local transfer coefficient were markedly affected by the inlet condition; those for the sharp-edged inlet exhibited a universal shape, while the shapes of those for the tube-fed inlet depended both on the Reynolds number and on whether the distribution corresponded to the inside or the outside of the bend. In addition, the distributions for the case of the sharp-edged inlet exhibited higher local maxima and approached the fully developed regime more rapidly than did those for the tube-fed inlet. The heat transfer results were supplemented by flow visualization.


2013 ◽  
Vol 2013 ◽  
pp. 1-17 ◽  
Author(s):  
Assal Farrahi ◽  
Ángel Sanz-Andrés

A semiempirical method for predicting the damping efficiency of hysteresis rods on-board small satellites is presented. It is based on the evaluation of dissipating energy variation of different ferromagnetic materials for two different rod shapes: thin film and circular cross-section rods, as a function of their elongation. Based on this formulation, an optimum design considering the size of hysteresis rods, their cross section shape, and layout has been proposed. Finally, the formulation developed was applied to the case of four existing small satellites, whose corresponding in-flight data are published. A good agreement between the estimated rotational speed decay time and the in-flight data has been observed.


Dean’s work on the steady motion of an incompressible fluid through a curved tube of circular cross-section is extended. A method using a Fourier-series development with respect to the polar angle in the plane of cross-section is formulated and the resulting coupled non­linear equations solved numerically. The results are presented in terms of a single variable D = 4 R √(2 a/L ), where R is the Reynolds number, a the radius of cross-section of the tube, and L the radius of the curve. The results cover the range of D from 96 (the upper limit of Dean’s work) to over 600. From these it is found that the secondary flow becomes very appreciable for D = 600, moving the position of maximum axial velocity to a distance less than 0.38 a from the outer boundary, and decreasing the flux by 28% of its value for the straight tube. These calculations fill a large part of the gap in existing knowledge of secondary flow patterns, which lies in the upper range of Reynolds number for which flow is laminar. This range is of particular interest in the investigation of the cardiovascular system


Sign in / Sign up

Export Citation Format

Share Document