Numerical investigation of wing–wing interaction and its effect on the aerodynamic force of a hovering dragonfly

Author(s):  
Prafulla Kumar Swain ◽  
Siva Prasad Dora ◽  
Suryanarayana Murthy Battula ◽  
Ashok K Barik

The present research focuses on the timing of wing–wing interaction that benefits the aerodynamic force of a dragonfly in hovering flight at Reynolds number 1350. A 3-D numerical simulation method, called the system coupling, was utilised by implementing a two-way coupling between the transient structural and flow analysis. We further explore the aerodynamic forces produced at different phase angles on the forewing and hindwing during the hovering flight condition of a dragonfly. A pair of dragonfly wings is simulated to obtain the force generated during flapping at a 60° inclination stroke plane angle with respect to the horizontal. The hovering flight is simulated by varying the phase angle and the inter-distance between the two wings. We observe a significant enhancement in the lift (16%) of the hindwing when it flaps in-phase with the forewing and closer to the forewing, maintaining an inter-wing distance of 1.2 cm (where centimetre is the mean chord length). However, for the same condition, the lift of the hindwing reduces by 9% when the wings are out of phase/counterstroke flapping. These benefits and drawbacks are dependent on the timing of the interactions between the forewing and hindwing. The time of interaction of wake capture, wing–wing interaction, dipole structure and development of root vortex are examined by 2-D vorticity of the flow field and isosurface of the 3-D model dragonfly. From the isosurface, we found that the root vortex elicited at the root of the hindwing in counter-flapping creates an obstacle for the shedding of wake vortices, which results in reduction of vertical lift during the upstroke of flapping. Hence, at the supination stage, a dragonfly uses a high rotation angle for the hovering flight mode. It is observed that the system coupling method was found to be more efficient and exhibited better performance. The present numerical methodology shows a very close match to the previously reported results.

Transport ◽  
2016 ◽  
Vol 33 (2) ◽  
pp. 335-343 ◽  
Author(s):  
Maciej Kozłowski

The construction of Personal Rapid Transit (PRT) vehicle made within the framework of Eco-Mobility project has been described in the present paper. Key features of the vehicles were identified – e.g. drive with three-phase linear motor with winding on the vehicle and fixed rotor in the road surface, contactless dynamic vehicle powering. Attention was paid to the difference in dynamic properties compared to rail vehicles, related to the lack of the so-called ‘centering mechanism’. A development of a nominal model for the analysis of vehicle drive properties was presented. Results of simulation studies were presented for a vehicle with running-drive system construction, planned for implementation in the city of Rzeszów (Poland). While discussing the problems of building a PRT system, there was a focus on the issue of determining power and traction of the vehicle. A methodology for determining the power and traction energy consumption of the vehicle was presented for assumed conditions of travel on road segments. Input values for the calculation of power are variables describing the curvature (or bends radii) of paths of movement between stops and the course of the current speed. Output values are total traction power or traction energy (where ‘traction’ refers to the power or mechanical work of drive forces). Three basic elements of traction power were isolated: the power of kinetic energy (for acceleration/delay of vehicle movement) basic (to offset the aerodynamic force of motion resistance at constant speed) and additional losses (to offset additional motion resistance forces operating in turns at constant speed). Due to the lack of vehicle prototypes with assumed structure, it was proposed that these components are determined via simulation. The presented results relate to the calculation of demand for power and energy for the planned test section. The scope of further work was indicated: determining the required traction characteristics of electric drive, selecting the best values for supercapacitor’s capacity in the drive system, determining the technical parameters of substation.


Author(s):  
J. L. Colehour ◽  
B. W. Farquhar ◽  
J. E. Gengler ◽  
T. A. Reyhner

Computational fluid dynamics (CFD) now allows analysis of propulsion system installations on subsonic transports to an extent that many configuration decisions can be made without testing. The methods discussed here utilize low-cost potential flow methods to predict inviscid flow characteristics and utility methods to model geometry, generate computational mesh, estimate wave drag, and perturb geometry in ways that promise improved performance. Jet plume effects are included in the potential flow analysis by means of a plume simulation method. Wave drag predictions yield levels of drag that are consistent with wind tunnel results, and, through contour optimization, wave drag for a trial propulsion installation geometry was reduced by about 50%. We conclude that through the use of methods such as these, many propulsion system installation design decisions can be made by analysis relatively quickly, which should lead to reduced design development time and cost.


2013 ◽  
Vol 376 ◽  
pp. 341-344
Author(s):  
Shan Ling Han ◽  
Ru Xing Yu ◽  
Yu Yue Wang ◽  
Gui Shen Wang

Because crosswind affects drivers to control their vehicles safely, the research on flow characteristics in automotive crosswind has a great significance to improve the crosswind stability of the vehicle. By the steady state numerical simulation method, the aerodynamic characteristics of external flow field of Ahmed body in crosswind was investigated. The Ahmed body with 25° slant angle is built in UG NX. The external flow field of the Ahmed body in the wind direction of 0°, 15º, 30° angle is simulated in XFlow software. According to the map of the pressure and velocity distribution, the flow field both before and after, as well as left and right has significant change as the wind direction angle increased, and the trail turbulence intensity also changes. The changes of aerodynamic force and moment affect the driving stability of a motor vehicle.


AIAA Journal ◽  
2006 ◽  
Vol 44 (7) ◽  
pp. 1532-1540 ◽  
Author(s):  
Mao Sun ◽  
Xin Yu

2011 ◽  
Vol 480-481 ◽  
pp. 585-589
Author(s):  
Jian Jun Song ◽  
Xiao Ping Du ◽  
Ji Guang Zhao ◽  
Jing Peng Chen ◽  
Qiao Wang ◽  
...  

With aiming at the problem of liquid hydrogen flowing through filling system in space launch site, the author set up a turbulence model and coupled with the analysis of turbulence condition of liquid hydrogen in tube. Based on the computational fluid dynamics, the flow field was studied according to the numerical simulation method. Then, the changes of flow parameters i.e. pressure and velocity at the tube were observed. Simulation results showed that, in the inlet-section, there existed boundary-layer, besides, the velocity and pressure which changed continually was not stable until the liquid hydrogen flowed through on-way. In addition, in water-carrying section of turbulence flow, the velocity distribution was even and there was no obvious delamination which explained that the mix was intense. The velocity near the surface of the tube was about zero and the pressure turned to smaller with the increase of tube length. As a result of the pressure drop, there existed the loss of on-way. The above simulation results which provided the theoretical basis for liquid hydrogen study accorded with the actual condition.


2020 ◽  
Vol 51 (4) ◽  
pp. 432-442
Author(s):  
Ahmad Syawaluddin ◽  
Sidrah Afriani Rachman ◽  
Khaerunnisa

Background and Objective. One of the challenges that social studies presents to teachers in class is the lack of students’ interest in the material. This study aims to develop snakes and ladders learning media for use in the subject of social studies in elementary school. Method. The research design used is the Four-D Research and Development (R&D) model by Thiagarajan (Santoso & Albaniah). The criteria used as a reference for the effectiveness of the learning media are students’ participation, interest, and learning outcomes, whereas for the practicality, the criteria are the implementation and teachers’ ability to use the learning media. The research employed descriptive statistics analysis and inductive-deductive flow analysis. Results. The results show that the snakes and ladders learning media on social studies appear to be valid and practical, and can effectively improve elementary school students’ interest and learning outcomes. The learning media is considered valid based on the experts’ validation with average 4.3 (good). The effectiveness of this learning media meets the criteria: (1) student participation in the learning process is high and (2) student learning outcomes meet the minimum learning mastery standard average at 79.04 of the ideal score of 100 and the completeness test of learning outcomes with the probability value of one sample t-test of 0.00 <0.05. The practicality of the learning media is shown through the observation result of the implementation of the media with an average of 4.4 (good), whereas the results of the student interest questionnaire show that of 25 students (92%) responded that they were happy with the subject matter taught, 80% of students responded that they were happy with the learning. Conclusion. The snakes and ladders learning media on social studies can enhance students’ interest and learning outcomes in elementary education.


2011 ◽  
Vol 480-481 ◽  
pp. 580-584
Author(s):  
Jian Jun Song ◽  
Xiao Ping Du ◽  
Ji Guang Zhao ◽  
Jing Peng Chen ◽  
Qiao Wang ◽  
...  

With aiming at the problem of liquid hydrogen flowing through filling system in space launch site, the author set up a math model of laminar flow and coupled with the analysis of laminar flow condition of liquid hydrogen in tube. Based on the computational fluid dynamics, the flow field was studied according to the numerical simulation method. Then, the changes of flow parameters i.e. pressure and velocity at the tube were observed. Simulation results showed that, in the inlet-section, there existed boundary-layer, besides, the velocity and pressure which changed continually was not stable until the liquid hydrogen flowed through on-way. In addition, the velocity distributed in the form of rotary parabolic surface whose axis was the tube’s axis itself in water-carrying section of on-way. The velocity near the surface of the tube was about zero and the pressure turned to smaller with the increase of tube length. As a result of the pressure drop, there existed the loss of on-way. The above simulation results which provided the theoretical basis for liquid hydrogen study accorded with the actual condition.


2021 ◽  
Author(s):  
Shi Meng ◽  
Guang Chen ◽  
Dan Zhou ◽  
Shuang Meng

Abstract The effect of the ground condition on unsteady aerodynamic performance of maglev train was numerically investigated with an IDDES (Improved Delayed Detached Eddy Simulation) method. The accuracy of the numerical method has been validated by wind tunnel experiments. The flow structure, slipstream and aerodynamic force around the train under stationary and moving ground conditions were compared. Compared with the stationary ground condition, the vortex structure under the condition of moving ground generated by the wake region is narrower and higher because of the track. Near the nose point of the head and tail vehicles, the peak value of slipstream under the condition of moving ground is slightly higher than that under stationary ground. In the wake area, the effect of the main vortex structure on both sides of the tail vehicle and the track makes the vortex structure in the wake area stronger than that under moving ground, the slipstream peak is larger and the locus thereof is further forward. Under the two ground conditions, the vortex structure is periodically shed from both sides of the train into the wake area, and the shedding frequency of the main vortex under the moving ground condition is lower than that under the stationary ground condition. Moving ground can increase the resistance of the maglev train, reduce the lift of the maglev train, and decrease the standard deviation of the maglev train’s aerodynamic force.


Author(s):  
Shine Win Naung ◽  
Mohammad Rahmati ◽  
Hamed Farokhi

Abstract Modern aeronautical Low-Pressure Turbines (LPTs) are prone to aeroelastic instability problems such as flutter. The aerodynamic performance of a modern LPT is often influenced by the interaction between the transient flow and the dynamic behaviour of the blade. Therefore, the investigation and understanding of the physics behind the interaction between the unsteady flow and the flutter phenomenon of the blade in an LPT, which is normally left out by existing studies, is an important aspect of the research to improve the aerodynamic performance of the turbine as well as to ensure the blade mechanical integrity. In this paper, a novel analysis is conducted to explore the flutter instability in a modern LPT, T106A turbine, using two inter blade phase angles (IBPAs), and their effects on the unsteady flow field are investigated. The zero degree and 180 degrees IBPAs are considered in this paper. A high-fidelity direct numerical simulation method is used for the flow simulations. Another distinctive feature of this paper is the use of the 3D model to analyse the effects associated with the 3D blade structure and the 3D vibration mode. The investigation and identification of adequate working ranges of the harmonic balance method, which has been widely used for the aeromechanical analysis of turbomachines, are also presented in this work. This paper will bridge a key gap in the knowledge of aeroelasticity modelling and analysis of modern LPTs.


Seikei-Kakou ◽  
1994 ◽  
Vol 6 (5) ◽  
pp. 342-348
Author(s):  
Kazutaka SAKAKI ◽  
Yoshifumi KUWANO ◽  
Toshihisa KAJIWARA ◽  
Kazumori FUNATSU

Sign in / Sign up

Export Citation Format

Share Document