High-resolution palaeohydrological reconstruction of central Italy during the Holocene

The Holocene ◽  
2018 ◽  
Vol 29 (3) ◽  
pp. 481-492 ◽  
Author(s):  
Marta Marchegiano ◽  
Alexander Francke ◽  
Elsa Gliozzi ◽  
Bernd Wagner ◽  
Daniel Ariztegui

The endorheic nature of Lake Trasimeno in combination with its position in central Italy makes it a relevant site to better constrain spatial differences in Holocene climatic variability in the Mediterranean area. Herein, we present a high-resolution ostracod record from the Holocene section of an 8.59-m-long sedimentary core, which is compared with historical data to distinguish anthropogenic and climatic signals. The occurrence, abundance and vanishing of ostracod species are directly controlled by lake-level variations, which are in turn related to global and regional climatic changes (i.e. moisture variations). The total organic carbon content as well as observed lithological changes provide additional information about Lake Trasimeno’s hydrological and trophic conditions in the past. Most important variations have been identified at ca. 10,000 cal. yr BP, when the lacustrine basin changed from a temporary to a permanent waterbody (from Sarsicypridopsis aculeata to Candona angulata association). The highest lake level and the total absence of ostracods occur at around 9000 cal. yr BP. The recorded humid phase persisted up to ca. 4200 cal yr BP since when a lake-level decreasing trend started and continued until the present day ( Candona angulata, Cyprideis torosa and Darvinula stevensoni associations). The frequency of changes in the relative abundance of the main species shows centennial variations (i.e. C. angulata, C. torosa and Darvinula stevensoni). As historical evidences yield that human interventions to control the lake level remained unsuccessful in the past, Lake Trasimeno records an almost pristine climatic signal during most of the Holocene, which is quite unusual in the highly populated Mediterranean area.

2020 ◽  
Author(s):  
Gonzalo Jiménez-Moreno ◽  
R. Scott Anderson ◽  
María J. Ramos-Román ◽  
Jon Camuera ◽  
Jose Manuel Mesa-Fernández ◽  
...  

<p>In this study, we synthesized pollen data from seven sites from the Sierra Nevada in southern Spain to investigate the response of forests in the western Mediterranean area to centennial- and millennial-scale climate changes and to human impact during the Holocene. In particular, here we focused in <em>Cedrus</em> pollen abundances, which most-likely originated from Northern Africa and were carried to Sierra Nevada by wind. Although <em>Cedrus</em> abundances are generally lower than 1% in the studied pollen samples, a comparison with North African pollen records shows similar trends at long- and short-term time-scales. Therefore, this record could be used as a proxy for changes in this forest species in North Africa. A Middle and Late Holocene <em>Cedrus</em> pollen increasing trend has been observed in the Sierra Nevada synthetic record, which seems to be the result of decreasing summer insolation. This would have produced overall cooler annual temperatures in Northern Africa (Atlas and Rif Mountains), benefiting the growth of this cool-adapted montane tree species, and lower summer evaporation, increasing available moisture during the summer, which is critical for this water-demanding species. Millennial- and centennial-scale variability also characterize the Sierra Nevada <em>Cedrus</em> synthetic record. <em>Cedrus</em> abundance oscillations could have been produced by well-known millennial-scale climatic variability that controlled cedar abundance in montane areas of N Africa.  </p>


2007 ◽  
Vol 67 (3) ◽  
pp. 383-393 ◽  
Author(s):  
Patrick Austin ◽  
Anson Mackay ◽  
Olga Palagushkina ◽  
Melanie Leng

AbstractFormerly the world's fourth largest lake by area, the Aral Sea is presently undergoing extreme desiccation due to large-scale irrigation strategies implemented in the Soviet era. As part of the INTAS-funded CLIMAN project into Holocene climatic variability and the evolution of human settlement in the Aral Sea basin, fossil diatom assemblages contained within a sediment core obtained from the Aral Sea have been applied to a diatom-based inference model of conductivity (r2 = 0.767, RMSEP = 0.469 log10 μS cm− 1). This has provided a high-resolution record of conductivity and lake level change over the last ca. 1600 yr. Three severe episodes of lake level regression are indicated at ca. AD 400, AD 1195–1355 and ca. AD 1780 to the present day. The first two regressions may be linked to the natural diversion of the Amu Darya away from the Aral Sea and the failure of cyclones formed in the Mediterranean to penetrate more continental regions. Human activity, however, and in particular the destruction of irrigation facilities are synchronous with these early regressions and contributed to the severity of the observed low stands.


2021 ◽  
Author(s):  
Nikolina Ilijanić ◽  
Slobodan Miko ◽  
Ozren Hasan ◽  
Dea Brunović ◽  
Martina Šparica Miko ◽  
...  

<p>Lake Visovac is a tufa barrier lake on the Krka River between Roški slap (60 m asl) and Skradinski buk (46 m absl) waterfalls, included in the Krka national park as primarily unaltered area of exceptional natural value. Paleolimnological research was conceived to address a lake evolution and depositional environments through the geophysical survey and collection of the lake sediment cores. A high-resolution bathymetric map was obtained using a multibeam sonar. The average lake depth varies between 20 and 25 m. Sediment cores were investigated to extract physical properties, sedimentological, mineralogical, geochemical and paleoecological records constrained by the radiocarbon chronology, to understand what was happening to both the landscapes and lakescapes of Lake Visovac during the last 2.000 cal yr.</p><p>Significant findings of the project are geomorphological features on the lake bottom: submerged sinkholes of various sizes (up to 40 m deep); submerged tufa barriers in the area of Kalički kuk (southern part of Lake Visovac) at the depths of 15 and 17 m, followed by a series of buried cascade tufa barriers at the depth of 25 m covered with up to 10 m of Holocene lake sediments; submerged vertical tufa barrier up to 32 m-high near the mouth of Čikola River; submerged landslides, small (river) fan structures characterized by sediment waves. Ground-penetrating-radar (GPR) data have been acquired due to the presence of gas-saturated sediments over a large area of the lake, that limited the use of high-resolution acoustic profiling. A total thickness of sediments is up to 40 m. High resolution paleoenvironmental record through the Late Holocene gives evidence of high sedimentation rates in Lake Visovac, variable soil erosion impact on lake sediment composition and carbonate authigenic sedimentation. Higher organic carbon is observed in the last 50 years due to changes in land cover and reforestation. Pleistocene lake sediment outcrops occur up to 20 m above the present lake levels indicating higher lake levels as a consequence of higher elevation of tuffa barriers. Kalički kuk, which lies up to 20 m above present lake level, is a remnant of these barriers which have been dated to MIS5. Results allow us to interpret the environmental and evolutionary dynamics of Lake Visovac in the following way: lake level more than 20 m higher than today in mid-Pleistocene with significantly larger lake volume in Lake Visovac, with active Kalički kuk and Skradinski buk waterfalls; lower lake-level at the beginning of the Holocene when several small lakes existed in isolated basins in the area of Lake Visovac. The tufa barrier at Skradinski buk started to grow faster than the Kalički kuk barriers and waterfalls resulting in their flooding and submergence during the Holocene. The tufa barrier at Skradinski buk has grown 15 m since then. This study demonstrates the role of geomorphological lakebed characteristics in reshaping our understanding of the environmental changes and the future of Lake Visovac.</p><p>The research was conducted as part of the project funded by the Krka National Park and CSF funded QMAD project (IP-04-2019-8505).</p>


2004 ◽  
Vol 62 (1) ◽  
pp. 39-48 ◽  
Author(s):  
Weijian Zhou ◽  
Xuefeng Yu ◽  
A.J. Timothy Jull ◽  
G. Burr ◽  
J.Y. Xiao ◽  
...  

Computer models suggest that the Holocene Optimum for East Asian summer monsoon precipitation occurred at different times in different regions of China. Previous studies indicate that this time-transgressive Holocene Optimum should have been experienced about 3000 yr ago in southern China. In this study we describe a section which allows us to test this timing directly. We have closely examined high-resolution eutrophic peat/mud sequences covering the past 18,000 cal yr at Dahu, Jiangxi, on the southern boundary of the mid subtropical zone in China. Late Pleistocene successions in the Dahu record indicate cooler and much wetter conditions relative to synchronous events in north-central China. Our results indicate that the Holocene Optimum occurred between ca. 10,000 and 6000 cal yr ago in southern China, consistent with the global pattern. Conditions were relatively dry and cold from 6000 to 4000 cal yr ago. Our data also support the conclusion that the last deglaciation to early Holocene in the south was much wetter, resulting in the formation of dense broad-leaved forests, which could have acted to moderate land temperature ∼10,000 to 6000 cal yr ago, yielding a stable early-Holocene climate. After 6000 cal yr, forest reduction led to unstable land temperatures, and possibly to a northerly shift of the subtropical high-pressure system. Whatever the mechanism, these changes resulted in decreased precipitation between 6000 and 4000 cal yr B.P. in southern China.


2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
Manish Tiwari ◽  
Ashutosh K. Singh ◽  
Rengaswamy Ramesh

Agricultural production and the availability of fresh water in Indian subcontinent critically depend on the monsoon rains. Therefore it is vital to understand the causal mechanisms underlying the observed changes in the Indian monsoon in the past. Paleomonsoon reconstructions show that the water discharge from the Ganges-Brahmaputra River system to the Bay of Bengal was maximum in the early to mid-Holocene; data from the Western Arabian Sea and Omanian speleothems indicate declining monsoon winds during the Holocene, whereas records from the South West Monsoon (SWM) precipitation dominated eastern Arabian Sea show higher runoff from the Western Ghats indicating gradually increasing monsoon precipitation during the Holocene. Thus there exists considerable spatial variability in the monsoon in addition to the temporal variability that needs to be assessed systematically. Here we discuss the available high resolution marine and terrestrial paleomonsoon records such as speleothems and pollen records of the SWM from important climatic regimes such as Western Arabian Sea, Eastern Arabian Sea, Bay of Bengal to assess what we have learnt from the past and what can be said about the future of water resources of the subcontinent in the context of the observed changes.


2020 ◽  
Author(s):  
Marie-Luise Adolph ◽  
Reinhard Lampe ◽  
Sebatian Lorenz ◽  
Torsten Haberzettl

<p>Beach ridges are a promising geoarchive to study lake-level variations as they indicate former lake-level maxima. Detecting paleo-shorelines and knowing their elevation, inner structure and age. This helps to quantify lake-level highstands, the duration of elevated lake levels as well as to reconstruct sedimentation processes as important indicators of either external forcing (e.g., higher precipitation/lower evaporation) or anthropogenic impacts (e.g., mill stowage) in the past. In this study, a quantitative paleohydrological reconstruction of lake Schweriner See, NE-Germany, should be achieved by a combination high-resolution multi-proxy analysis on sediment cores from both distal and littoral but also from onshore parts. This poster focuses on the onshore part of the eastern shoreline where a succession of beach ridges is located within a distance of up to 600 m away from the recent shoreline and up to 1.5 m above today’s lake level. This indicates both a greater extension and a higher water level in the past. Here we examine these beach ridges using high-resolution luminescence profiling (POSL, 5-15 cm intervals) with a SUERC portable OSL unit combined with full OSL dating (coarse grain quartz SAR protocol) and independent radiocarbon dating to obtain ages of lake-level maxima as well as a (relative) age distribution within and between individual beach ridges. We measured the water content, loss-on-ignition and grain size variation to characterize the beach ridges and their depositional processes but also to estimate the influences of these parameters on the luminescence signal.</p><p>The sandy beach ridges are deposited on peat, which overlays mainly lacustrine silty and calcareous sediment. The upper 20-40 cm are enriched in humus. This stratigraphy demonstrates a silting-up sequence and development of a wetland, which was affected by a dynamic lake-level development.The dominating grain size within the ridges is coarse grained sand with small gravel and occasionally thin organic layers in between. The initial results of full OSL dating gives a hint that all beach ridges were deposited during the Holocene. The luminescence profiles typically show an increase in photon counts with depth in the upper part, which was influenced by humus enrichment. The luminescence in the otherwise mainly organic and lime free sands below behave differently with depth in each beach ridge. The total photon count either 1) decreases perhaps influenced by a higher groundwater table in the past or reworking of older nearby beach ridges, 2) increases, offering the possibility to extract relative sedimentation rates, but sometimes has leaps to smaller values or 3) fluctuates around a mean value indicating a potential rapid sediment accumulation. Fluctuating values might also occur due to bioturbation.</p><p>In this study, high resolution POSL profiling in combination with grain-size analysis proved to be a promising tool to investigate lacustrine beach ridges and their depositional processes. The method turned out to be valuable to not only select the right sample for OSL dating but also to get a better understanding of beach ridge deposition at Schweriner See.</p>


Author(s):  
John L. Hutchison

Over the past five years or so the development of a new generation of high resolution electron microscopes operating routinely in the 300-400 kilovolt range has produced a dramatic increase in resolution, to around 1.6 Å for “structure resolution” and approaching 1.2 Å for information limits. With a large number of such instruments now in operation it is timely to assess their impact in the various areas of materials science where they are now being used. Are they falling short of the early expectations? Generally, the manufacturers’ claims regarding resolution are being met, but one unexpected factor which has emerged is the extreme sensitivity of these instruments to both floor-borne and acoustic vibrations. Successful measures to counteract these disturbances may require the use of special anti-vibration blocks, or even simple oil-filled dampers together with springs, with heavy curtaining around the microscope room to reduce noise levels. In assessing performance levels, optical diffraction analysis is becoming the accepted method, with rotational averaging useful for obtaining a good measure of information limits. It is worth noting here that microscope alignment becomes very critical for the highest resolution.In attempting an appraisal of the contributions of intermediate voltage HREMs to materials science we will outline a few of the areas where they are most widely used. These include semiconductors, oxides, and small metal particles, in addition to metals and minerals.


Author(s):  
H. Kohl

High-Resolution Electron Microscopy is able to determine structures of crystals and interfaces with a spatial resolution of somewhat less than 2 Å. As the image is strongly dependent on instrumental parameters, notably the defocus and the spherical aberration, the interpretation of micrographs necessitates a comparison with calculated images. Whereas one has often been content with a qualitative comparison of theory with experiment in the past, one is currently striving for quantitative procedures to extract information from the images [1,2]. For the calculations one starts by assuming a static potential, thus neglecting inelastic scattering processes.We shall confine the discussion to periodic specimens. All electrons, which have only been elastically scattered, are confined to very few directions, the Bragg spots. In-elastically scattered electrons, however, can be found in any direction. Therefore the influence of inelastic processes on the elastically (= Bragg) scattered electrons can be described as an attenuation [3]. For the calculation of high-resolution images this procedure would be correct only if we had an imaging energy filter capable of removing all phonon-scattered electrons. This is not realizable in practice. We are therefore forced to include the contribution of the phonon-scattered electrons.


Sign in / Sign up

Export Citation Format

Share Document