scholarly journals The Effect of iPS-Derived Neural Progenitors Seeded on Laminin-Coated pHEMA-MOETACl Hydrogel with Dual Porosity in a Rat Model of Chronic Spinal Cord Injury

2019 ◽  
Vol 28 (4) ◽  
pp. 400-412 ◽  
Author(s):  
Jiri Ruzicka ◽  
Nataliya Romanyuk ◽  
Klara Jirakova ◽  
Ales Hejcl ◽  
Olga Janouskova ◽  
...  

Spinal cord injury (SCI), is a devastating condition leading to the loss of locomotor and sensory function below the injured segment. Despite some progress in acute SCI treatment using stem cells and biomaterials, chronic SCI remains to be addressed. We have assessed the use of laminin-coated hydrogel with dual porosity, seeded with induced pluripotent stem cell-derived neural progenitors (iPSC-NPs), in a rat model of chronic SCI. iPSC-NPs cultured for 3 weeks in hydrogel in vitro were positive for nestin, glial fibrillary acidic protein (GFAP) and microtubule-associated protein 2 (MAP2). These cell-polymer constructs were implanted into a balloon compression lesion, 5 weeks after lesion induction. Animals were behaviorally tested, and spinal cord tissue was immunohistochemically analyzed 28 weeks after SCI. The implanted iPSC-NPs survived in the scaffold for the entire experimental period. Host axons, astrocytes and blood vessels grew into the implant and an increased sprouting of host TH+ fibers was observed in the lesion vicinity. The implantation of iPSC-NP-LHM cell-polymer construct into the chronic SCI led to the integration of material into the injured spinal cord, reduced cavitation and supported the iPSC-NPs survival, but did not result in a statistically significant improvement of locomotor recovery.

Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2245
Author(s):  
Jue-Zong Yeh ◽  
Ding-Han Wang ◽  
Juin-Hong Cherng ◽  
Yi-Wen Wang ◽  
Gang-Yi Fan ◽  
...  

In spinal cord injury (SCI) therapy, glial scarring formed by activated astrocytes is a primary problem that needs to be solved to enhance axonal regeneration. In this study, we developed and used a collagen scaffold for glial scar replacement to create an appropriate environment in an SCI rat model and determined whether neural plasticity can be manipulated using this approach. We used four experimental groups, as follows: SCI-collagen scaffold, SCI control, normal spinal cord-collagen scaffold, and normal control. The collagen scaffold showed excellent in vitro and in vivo biocompatibility. Immunofluorescence staining revealed increased expression of neurofilament and fibronectin and reduced expression of glial fibrillary acidic protein and anti-chondroitin sulfate in the collagen scaffold-treated SCI rats at 1 and 4 weeks post-implantation compared with that in untreated SCI control. This indicates that the collagen scaffold implantation promoted neuronal survival and axonal growth within the injured site and prevented glial scar formation by controlling astrocyte production for their normal functioning. Our study highlights the feasibility of using the collagen scaffold in SCI repair. The collagen scaffold was found to exert beneficial effects on neuronal activity and may help in manipulating synaptic plasticity, implying its great potential for clinical application in SCI.


2018 ◽  
Vol 47 (2) ◽  
pp. 617-629 ◽  
Author(s):  
Zhonglei Sun ◽  
Yingfu Liu ◽  
Xianbin Kong ◽  
Renjie Wang ◽  
Yunqiang Xu ◽  
...  

Background/Aims: Current therapies for spinal cord injury (SCI) have limited efficacy, and identifying a therapeutic target is a pressing need. Sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2 (SERCA2) plays an important role in regulating calcium homeostasis, which has been shown to inhibit apoptosis. Exendin-4 has been shown to inhibit the apoptosis of nerve cells in SCI, which can also improve SERCA2 expression. In this study, we sought to determine whether exendin-4 plays a protective role in a rat model of SCI via SERCA2. Methods: To investigate the effects of exendin-4 on SCI, a rat model of SCI was induced by a modified version of Allen’s method. Spinal cord tissue sections from rats and western blot analysis were used to examine SERCA2 expression after treatment with the long-acting glucagon-like peptide 1 receptor exendin-4 or the SERCA2 antagonist 5(6)-carboxyfluorescein diacetate N-succinimidyl ester (CE). Locomotor function was evaluated using the Basso Beattie Bresnahan locomotor rating scale and slanting board test. Results: Cell apoptosis was increased with CE treatment and decreased with exendin-4 treatment. Upregulation of SERCA2 in female rats with SCI resulted in an improvement of motor function scores and histological changes. Conclusion: These findings suggest that exendin-4 plays a protective role in a rat model of SCI through SERCA2 via inhibition of apoptosis. Existing drugs targeting SERCA2 may be an effective therapeutic strategy for the treatment of SCI.


RSC Advances ◽  
2019 ◽  
Vol 9 (55) ◽  
pp. 32072-32080
Author(s):  
Kun Wang ◽  
Meng Li ◽  
Linyu Jin ◽  
Chao Deng ◽  
Zhi Chen ◽  
...  

The present study was aimed at the investigation of the effects of melatonin on spinal cord injury (SCI) and the role of IGFBP3 in SCI both in vivo and in vitro.


2021 ◽  
Author(s):  
Jialong Qi ◽  
Tao Wang ◽  
Zhidong Zhang ◽  
Zongsheng Yin ◽  
Yiming Liu ◽  
...  

Study design: Spinal cord injury (SCI) rat model and cell model were established for in vivo and in vitro experiments. Functional assays were utilized to explore the role of the circRNAs derived from catenin beta 1 (mmu_circ_0001859, circ-Ctnnb1 herein) in regulating neuronal cell viability and apoptosis. Bioinformatics analysis and mechanism experiments were conducted to assess the underlying molecular mechanism of circ-Ctnnb1. Objective: We aimed to probe into the biological function of circ-Ctnnb1 in neuronal cells of SCI. Methods: The rat model of SCI and hypoxia-induced cell model were constructed to examine circ-Ctnnb1 expression in SCI through quantitative reverse transcription real-time polymerase chain reaction (RT-qPCR). Basso, Beattie and Bresnahan (BBB) score was utilized for evaluating the neurological function. Terminal-deoxynucleoitidyl Transferase Mediated Nick End labeling (TUNEL) assays were performed to assess the apoptosis of neuronal cells. RNase R and Actinomycin D (ActD) were used to treat cells to evaluate the stability of circ-Ctnnb1. Results: Circ-Ctnnb1 was highly expressed in SCI rat models and hypoxia-induced neuronal cells, and its deletion elevated the apoptosis rate of hypoxia-induced neuronal cells. Furthermore, circ-Ctnnb1 activated the Wnt/β-catenin signaling pathway via sponging mircoRNA-205-5p (miR-205-5p) to up-regulate Ctnnb1 and Wnt family member 2B (Wnt2b). Conclusion: Circ-Ctnnb1 promotes SCI through regulating Wnt/β-catenin signaling via modulating the miR-205-5p/Ctnnb1/Wnt2b axis.


2018 ◽  
Vol 49 (2) ◽  
pp. 595-609 ◽  
Author(s):  
Jingyu Wang ◽  
Heyangzi Li ◽  
Yucheng Ren ◽  
Ying Yao ◽  
Jue Hu ◽  
...  

Background/Aims: Spinal cord injury (SCI) is a serious global problem that leads to permanent motor and sensory deficits. This study explores the anti-apoptotic and neuroprotective effects of the natural extract β-elemene in vitro and in a rat model of SCI. Methods: CCK-8 assay was used to evaluate cell viability and lactate dehydrogenase assay was used to evaluate cytotoxicity. A model of cell injury was established using cobalt chloride. Apoptosis was evaluated using a fluorescence-activated cell sorting assay of annexin V-FITC and propidium iodide staining. A rat SCI model was created via the modified Allen’s method and Basso, Beattie, and Bresnahan (BBB) scores were used to assess locomotor function. Inflammatory responses were assessed via enzyme-linked immunosorbent assay (ELISA). Apoptotic and surviving neurons in the ventral horn were respectively observed via terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining and Nissl staining. Western blotting was used to measure protein expression. Results: β-elemene (20 μg/ml) promoted cell viability by activating phosphorylation of the PI3K-AKT-mTOR pathway. β-elemene reduced CoCl2-induced cellular death and apoptosis by suppressing the expression levels of CHOP, cleaved-caspase 12, 78-kilodalton glucose-regulated protein, cleaved-caspase 3, and the Bax/Bcl-2 ratio. In the rat model of SCI, Nissl and TUNEL staining showed that β-elemene promoted motor neuron survival and reduced neuronal apoptosis in the spinal cord ventral horn. BBB scores showed that β-elemene significantly promoted locomotor behavioral recovery after SCI. In addition, β-elemene reduced the ELISA-detected secretion of interleukin (IL)-6 and IL-1β. Conclusion: β-elemene reduces neuronal apoptosis by alleviating endoplasmic reticulum stress in vitro and in vivo. In addition, β-elemene promotes locomotor function recovery and tissue repair in SCI rats. Thus, our study provides a novel encouraging strategy for the potential treatment of β-elemene in SCI patients.


Author(s):  
Min Fei ◽  
Zheng Li ◽  
Yuanwu Cao ◽  
Chang Jiang ◽  
Haodong Lin ◽  
...  

AbstractSpinal cord injury (SCI) is one common neurological condition which involves primary injury and secondary injury. Neuron inflammation and apoptosis after SCI is the most important pathological process of this disease. Here, we tried to explore the influence and mechanism of miRNAs on the neuron inflammatory response and apoptosis after SCI. First, by re-analysis of Gene Expression Omnibus dataset (accession GSE19890), miR-182 was selected for further study because of its suppressive effects on the inflammatory response in the various types of injuries. Functional experiments demonstrated that miR-182 overexpression promoted functional recovery, reduced histopathological changes, and alleviated spinal cord edema in mice. It was also observed that miR-182 overexpression reduced apoptosis and attenuated the inflammatory response in spinal cord tissue, as evidenced by the reduction of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β, and the induction of IL-10. Using a lipopolysaccharide (LPS)-induced SCI model in BV-2 cells, we found that miR-182 was downregulated in the BV-2 cells following LPS stimulation, and upregulation of miR-182 improved LPS-induced cell damage, as reflected by the inhibition of apoptosis and the inflammatory response. IκB kinase β (IKKβ), an upstream target of the NF-κB pathway, was directly targeted by miR-182 and miR-182 suppressed its translation. Further experiments revealed that overexpression of IKKβ reversed the anti-apoptosis and anti-inflammatory effects of miR-182 in LPS stimulated BV-2 cells. Finally, we found that miR-182 overexpression blocked the activation of the NF-κB signaling pathway in vitro and in vivo, as demonstrated by the downregulation of phosphorylated (p‑) IκB-α and nuclear p-p65. Taken together, these data indicate that miR-182 improved SCI-induced secondary injury through inhibiting apoptosis and the inflammatory response by blocking the IKKβ/NF-κB pathway. Our findings suggest that upregulation of miR-182 may be a novel therapeutic target for SCI.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Changzhao Gao ◽  
Fei Yin ◽  
Ran Li ◽  
Qing Ruan ◽  
Chunyang Meng ◽  
...  

Spinal cord injury (SCI) causes a significant physical, emotional, social, and economic burden to millions of people. MicroRNAs are known players in the regulatory circuitry of the neural repair in SCI. However, most microRNAs remain uncharacterized. Here, we demonstrate the neuroprotection of microRNA-145 (miR-145) after SCI in vivo and in vitro. In silico analysis predicted the target gene KDM6A of miR-145. The rat SCI model was developed by weight drop, and lipopolysaccharide- (LPS-) induced PC12 cell inflammatory injury model was also established. We manipulated the expression of miR-145 and/or KDM6A both in vivo and in vitro to explain their roles in rat neurological functional recovery as well as PC12 cell activities and inflammation. Furthermore, we delineated the mechanistic involvement of NOTCH2 and Abcb1a in the neuroprotection of miR-145. According to the results, miR-145 was poorly expressed and KDM6A was highly expressed in the spinal cord tissue of the SCI rat model and LPS-induced PC12 cells. Overexpression of miR-145 protects PC12 cells from LPS-induced cell damage and expedites neurological functional recovery of SCI in rats. miR-145 was validated to target and downregulate the demethylase KDM6A expression, thus abrogating the expression of Abcb1a by promoting the methylation of NOTCH2. Additionally, in vivo findings verified that miR-145 expedites neuroprotection after SCI by regulating the KDM6A/NOTCH2/Abcb1a axis. Taken together, miR-145 confers neuroprotective effects and enhances neural repair after SCI through the KDM6A-mediated NOTCH2/Abcb1a axis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Haoyu Wang ◽  
Jing Yuan ◽  
Xiaoqian Dang ◽  
Zhibin Shi ◽  
Wenrui Ban ◽  
...  

Abstract Background Spinal cord injury (SCI) is a disabling disorder, resulting in neurological impairments. This study investigated the mechanism of methyltransferase-like 14 (Mettl14) on apoptosis of spinal cord neurons during SCI repair by mediating pri-microRNA (miR) dependent N6-methyladenosine (m6A) methylation. Methods The m6A content in total RNA and Mettl14 levels in spinal cord tissues of SCI rats were detected. Mettl14 expression was intervened in SCI rats to examine motor function, neuron apoptosis, and recovery of neurites. The cell model of SCI was established and intervened with Mettl14. miR-375, related to SCI and positively related to Mettl14, was screened out. The expression of miR-375 and pri-miR-375 after Mettl14 intervention was detected. The expression of pri-miR-375 combined with DiGeorge critical region 8 (DGCR8) and that modified by m6A was detected. Furthermore, the possible downstream gene and pathway of miR-375 were analysed. SCI cell model with Mettl14 intervention was combined with Ras-related dexamethasone-induced 1 (RASD1)/miR-375 intervention to observe the apoptosis. Results Mettl14 level and m6A content in spinal cord tissue were significantly increased. After Mettl14 knockdown, the injured motor function was restored and neuron apoptosis was reduced. In vitro, Mettl14 silencing reduced the apoptosis of SCI cells; miR-375 was reduced and pri-miR-375 was increased; miR-375 targeted RASD1. Silencing Mettl14 inactivated the mTOR pathway. The apoptosis in cells treated with silencing Mettl14 + RASD1/miR-375 was inhibited. Conclusions Mettl14-mediated m6A modification inhibited RASD1 and induced the apoptosis of spinal cord neurons in SCI by promoting the transformation of pri-miR-375 to mature miR-375.


2018 ◽  
Vol 50 (2) ◽  
pp. 512-524 ◽  
Author(s):  
Guiying Deng ◽  
Yunbing Gao ◽  
Zhongxi Cen ◽  
Jichen He ◽  
Baichuan Cao ◽  
...  

Background/Aims: miR-136-5p participates in recovery after spinal cord injury (SCI) via an unknown mechanism. We investigated the mechanism underlying the involvement of miR-136-5p in the inflammatory response in a rat model of SCI. Methods: Sprague-Dawley rat astrocytes were cultured in vitro to construct a reporter plasmid. Luciferase assays were used to detect the ability of miR-136-5p to target the IKKβ and A20 genes. Next, recombinant lentiviral vectors were constructed, which either overexpressed miR-136-5p or inhibited its expression. The influence of miR-136-5p overexpression and miR-136-5p silencing on inflammation was observed in vivo in an SCI rat model. The expression of IL-1β, IL-6, TNF-α, IFN-α, and related proteins (A20, IKKβ, and NF-κB) was detected. Results: In vitro studies showed that luciferase activity was significantly activated in the presence of the 3’ untranslated region (UTR) region of the IKKβ gene after stimulation of cells with miR-136-5p. However, luciferase activity was significantly inhibited in the presence of the 3’UTR region of the A20 gene. Thus, miR-136-5p may act directly on the 3’UTR regions of the IKKβ and A20 genes to regulate their expression. miR-136-5p overexpression promoted the production of related cytokines and NF-κB in SCI rats and inhibited the expression of A20 protein. Conclusion: Overexpression of miR-136-5p promotes the generation of IL-1β, IL-6, TNF-α, IFN-α, IKKβ, and NF-κB in SCI rats but inhibits the expression of A20. Under these conditions, inflammatory cell infiltration into the rat spinal cord increases and injury is significantly aggravated. Silencing of miR-136-5p significantly reduces the protein expression results described after miR-136-5p overexpression and ameliorates the inflammatory cell infiltration and damage to the spinal cord. Therefore, miR-136-5p might be a new target for the treatment of SCI.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Marco Bonizzato ◽  
Nicholas D. James ◽  
Galyna Pidpruzhnykova ◽  
Natalia Pavlova ◽  
Polina Shkorbatova ◽  
...  

AbstractA spinal cord injury usually spares some components of the locomotor circuitry. Deep brain stimulation (DBS) of the midbrain locomotor region and epidural electrical stimulation of the lumbar spinal cord (EES) are being used to tap into this spared circuitry to enable locomotion in humans with spinal cord injury. While appealing, the potential synergy between DBS and EES remains unknown. Here, we report the synergistic facilitation of locomotion when DBS is combined with EES in a rat model of severe contusion spinal cord injury leading to leg paralysis. However, this synergy requires high amplitudes of DBS, which triggers forced locomotion associated with stress responses. To suppress these undesired responses, we link DBS to the intention to walk, decoded from cortical activity using a robust, rapidly calibrated unsupervised learning algorithm. This contingency amplifies the supraspinal descending command while empowering the rats into volitional walking. However, the resulting improvements may not outweigh the complex technological framework necessary to establish viable therapeutic conditions.


Sign in / Sign up

Export Citation Format

Share Document