scholarly journals A New Equation for the Determination of the Thermal Expansion Coefficient of Particulate Composites

1996 ◽  
Vol 5 (1) ◽  
pp. 096369359600500
Author(s):  
A. R. Boccaccini

A new equation has been derived for the determination of the thermal expansion coefficient of isotropic particulate composites. An original analysis by Tummala and Friedberg was modified by incorporating the dependence of the internal thermal stress on the inclusion volume fraction, as known from the literature. For low volume fractions of inclusions the new equation gives similar values to the original Tummala and Friedberg equation. For intermediate volume fractions, however (≈0.3 ≤ f ≤ ≈0.7), the present equation is shown to be in better agreement with experimental values for different composite systems investigated.

2013 ◽  
Vol 1507 ◽  
Author(s):  
Yoshitaka Ehara ◽  
Satoru Utsugi ◽  
Takahiro Oikawa ◽  
Tomoaki Yamada ◽  
Hiroshi Funakubo

ABSTRACTEpitaxial rhombohedral Pb(Zr0.65Ti0.35)O3films with (100) and (110)/(10-1) and (111)/(11-1) orientations were grown on various kinds of singlecrystal substrates having different thermal expansion coefficient. Volume fractions of (110) and (111) orientations in respective (110)/(10-1) and (111)/(11-1)-oriented films were almost linearly increased with increasing thermal strain, εthermal, applied to the films that wasgenerated under the cooling process after the deposition from the growth temperature to the Curie temperature.Observed saturationpolarization (Psat)was changed linearly with the volume fractions of (110) and (111) orientations, in the same manner asthe volume fractions of (001) and (101) orientations in (001)/(100) and (101)/(110) oriented tetragonal Pb(Zr,Ti)O3 filmsreported previously. These results showed that the volume fraction of the non-180o domains Pb(Zr,Ti)O3films of both tetragonal and rhombohedral symmetriescan be manipulated by εthermal, which brings possibly to control the Psat value.


2018 ◽  
Vol 56 (5) ◽  
pp. 668-672 ◽  
Author(s):  
S. V. Konovalikhin ◽  
D. Yu. Kovalev ◽  
V. I. Ponomarev

2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Hongfang Hou ◽  
Wanjing Cui ◽  
Jiaojiao Chen ◽  
Lingzong Meng ◽  
Yafei Guo ◽  
...  

Densities of sodium arsenite (NaAsO2) aqueous solution with the molality varied from 0.19570 to 1.94236 mol·kg−1 at temperature intervals of 5 K from 283.15 to 363.15 K and 101 ± 5 kPa were measured by a precise Anton Paar Digital vibrating-tube densimeter. Apparent molar volumes (VΦ) and thermal expansion coefficient (α) were obtained on the basis of experimental data. The 3D diagram of apparent molar volume against temperature and molality and the diagram of thermal expansion coefficient against molality were generated. According to the Pitzer ion-interaction equation of the apparent molar volume model, the Pitzer single-salt parameters (βM,X0υ, βM,X1υ, βM,X2υ, and CM,Xυ, MX = NaAsO2) and their temperature-dependent correlation F(i, p, T) = a1 + a2ln (T/298.15) + a3(T − 298.15) + a4/(620 − T) + a5/(T − 227) (where T is temperature in Kelvin and ai are the correlation coefficients) for NaAsO2 were obtained for the first time. The predictive apparent molar volumes agree well with the experimental values, and those results indicated that the single-salt parameters and the temperature-dependent formula are reliable.


1969 ◽  
Vol 42 (5) ◽  
pp. 1409-1411
Author(s):  
B. E. Eichinger ◽  
P. J. Flory

Abstract The density, thermal expansion coefficient, and thermal pressure coefficient for polyisobutylene of mol wt 40,000 have been accurately determined from 0 to 150°. Results are compared with the reduced equation of state employed in the theory of solutions. The characteristic parameters v*, T*, and p* required for the treatment of polyisobutylene solutions are obtained from the experimental results.


Sign in / Sign up

Export Citation Format

Share Document