Identification of lactic acid bacteria and rhizobacteria by ultraviolet-visible-near infrared spectroscopy and multivariate classification

2021 ◽  
pp. 096703352110359
Author(s):  
Sylvain Treguier ◽  
Christel Couderc ◽  
Marjorie Audonnet ◽  
Leïla Mzali ◽  
Helene Tormo ◽  
...  

The biological processes of interest to agro-industry involve numerous bacterial species. Lactic acid bacteria produce metabolites capable of fermenting food products and modifying their organoleptic properties, and plant-growth-promoting rhizobacteria can act as biofertilizers, biostimulants, or biocontrol agents in agriculture. The protocol of conventional techniques for bacterial identification, currently based on genotyping and phenotyping, require specific sample preparation and destruction. The work presented herein details a method for rapid identification of lactic acid bacteria and rhizobacteria at the genus and species level. To develop the method, bacteria were inoculated on an agar medium and analyzed by near infrared (NIR) and ultraviolet-visible-NIR (UV-Vis-NIR) spectroscopy. Artificial neural network models applied to the UV-Vis-NIR spectra correctly identified the genus (species) of 70% (63%) of the lactic acid bacteria and 67% of the rhizobacteria on an independent prediction set of unknown bacterial strains. These results demonstrate the potential of UV-Vis-NIR spectroscopy to identify bacteria directly on agar plates.

2016 ◽  
Vol 59 (2) ◽  
pp. 85-98
Author(s):  
Saiqa Andleeb ◽  
Nazish Mazhar Ali ◽  
Bushra Mazhar ◽  
Iram Khadija ◽  
Bushra Kalim

Bacteriocin producing bacteria are commonly found in meat products to enhance theirshelf-life. In the present study, bacterial species were isolated from meat samples (beef) from differentlocalities of Lahore, Pakistan. MRS agar medium was used to isolate lactic acid bacteria (LAB) throughspread and streak methods (incubated for 72 h at 37 °C). Identification of bacteriocinogenic LAB strainswas done by using staining techniques, morphology based characteristics and biochemical tests. Thesestrains were BSH 1b, BSH 3a, BIP 4a, BIP 3a, BIP 1b and BRR 3a. Antibacterial activity of LAB wasperformed against food borne pathogens viz., Escherichia coli and Staphylococcus aureus through paperdisc diffusion method. Three bacterial strains showed maximum inhibition and characterised by ribotypingviz., BIP 4a was identified as Lactobacillus curvatus, BIP 3a was Staphylococcus warneri and BIP 1b wasLactobacillus graminis. Optimum pH 5-6.5 and 30-37 °C temperature for isolated bacterial strains wasrecorded. Protein concentration measured was 0.07 mg/mL for BSH 1b, 0.065 mg/mL for BSH 3a,0.057 mg/mL for BIP 4a, 0.062 mg/mL for BIP 1b, 0.065 mg/mL for BIP 3a and for BRR 3a 0.078 mg/mL,respectively. Bacteriocin of all isolates except BIP 3a was found to be sensitive towards pepsin and resistanttowards Rnase. Bacteriocin production was stable at between pH 5.0 and 6.0 and resistant temperaturewas 40 °C. It was concluded that lactic acid bacteria (LAB) from meat can be helpful as antibacterialagents against food-borne bacterial pathogens because of thermostable producing bacteriocin.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 963
Author(s):  
Jon Kepa Izaguirre ◽  
Leire Barañano ◽  
Sonia Castañón ◽  
Itziar Alkorta ◽  
Luis M. Quirós ◽  
...  

Soybeans and soy-based products contain isoflavones which can be used for nutraceutical and medical applications. In soybeans and in unfermented soy foods, isoflavones are normally present as glycosides. Isoflavone glycosides can be enzymatically converted to isoflavone aglycones, thus releasing the sugar molecule. The effective absorption of isoflavones in humans requires the bioconversion of isoflavone glycosides to isoflavone aglycones through the activity of the enzyme β-glucosidase. The objective was to assess the capacity of 42 bacterial strains (belonging to Lactobacillus, Streptococcus and Enterococcus) to produce β-glucosidase activity. The strain that showed the highest β-glucosidase activity (Lactobacillus plantarum 128/2) was then used for the optimization of the bioconversion of genistin and daidzin present in commercial soymilk to their aglycone forms genistein and daidzein. The contribution of process parameters (temperature, inoculum size, time) to the efficiency of such bioactivation was tested. Lactobacillus plantarum 128/2 was able to completely bioactivate soymilk isoflavones under the following conditions: 25 °C temperature, 2% inoculum size and 48 h process time. These results confirm the suitability of lactic acid bacteria for the bioactivation of isoflavones present in soymilk and provide an interesting candidate (L. plantarum 182/2) for food industries to perform this transformation.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Lu Xu ◽  
Peng-Tao Shi ◽  
Xian-Shu Fu ◽  
Hai-Feng Cui ◽  
Zi-Hong Ye ◽  
...  

This paper reports a rapid identification method for a Chinese green tea with PGI, Anji-white tea, by class modeling techniques and NIR spectroscopy. 167 real and representative Anji-white tea samples were collected from 8 tea plantations in their original producing areas for model training. Another 81 non-Anji-white tea samples of similar appearance were collected from 7 important tea producing areas and used for validation of model specificity. Diffuse NIR spectra were measured with finely ground tea powders. OCPLS and SIMCA were used to describe the distribution of representative Anji-white tea objects and predict the authenticity of new objects. For data preprocessing, smoothing, derivatives, and SNV were applied to improve the raw spectra and classification performance. It is demonstrated that taking derivatives and SNV can improve classification accuracy and reduce the complexity of class models by removing spectral background and baseline. For the best models, the sensitivity and specificity were 0.886 and 0.951 for OCPLS, 0.886 and 0.938 for SIMCA with SNV spectra, respectively. Although it is difficult to perform an exhaustive analysis of all types of potential false objects, the proposed method can detect most of the important non-Anji-white teas in the Chinese market.


2018 ◽  
Vol 6 (2) ◽  
pp. 500-508
Author(s):  
Julie Ann A. Arcales ◽  
Garner Algo L.Alolod

Isolation and characterization of bacteria in food products are important to determine and distinguish the beneficial or harmful effects of microbiota in certain samples. Lactic acid bacteria in food products had long been associated to good factors as food preservatives and with added fermentation metabolites. This study isolated and characterized lactic acid bacteria from burong bangus. The culture and purification process of bacteria isolation resulted to 4 strains of lactic acid bacteria namely Enterococcus faecalis, Tetragenococcus muriaticus, Lactobacillus delbrueckii subp. delbrueckii and Carnobacterium divergens. High enzymatic activity were observed with E. faecalis particularly on lipase and protease assay. While C. divergens have no enzymatic activity against lipase, protease, amylase and cellulase. The antimicrobial property of L. delbrueckii is only susceptible to amoxicillin unlike the other three bacteria isolates. No antagonistic activity were observed with the four bacterial strains against Bacillus subtilis, Staphylococcus aureus and Escherichia coli. The result of this study showed promising benefits to the industry especially in developing countries like the Philippines because population are not yet so aware of this organisms and the benefits that can be derived through their consumption.


Author(s):  
Roseline Eleojo Kwasi ◽  
Iyanuoluwa Gladys Aremu ◽  
Qudus Olamide Dosunmu ◽  
Funmilola A. Ayeni

Background: Ogi constitutes a rich source of lactic acid bacteria (LAB) with associated health benefits to humans through antimicrobial activities. However, the high viability of LAB in Ogi and its supernatant (Omidun) is essential. Aims: This study was carried out to assess the viability of LAB in various forms of modified and natural Ogi and the antimicrobial properties of Omidun against diarrhoeagenic E coli. Methods and Material: The viability of LAB was assessed in fermented Ogi slurry and Omidun for one month and also freeze-dried Ogi with and without added bacterial strains for two months. A further 10 days viability study of modified Omidun, refrigerated Omidun, and normal Ogi was performed. The antimicrobial effects of modified Omidun against five selected strains of diarrhoeagenic E. coli (DEC) were evaluated by the co-culture method. Results: Both drying methods significantly affected carotenoids and phenolic compounds. The Ogi slurry had viable LAB only for 10 days after which, there was a succession of fungi and yeast. Omidun showed 2 log10cfu/ml reduction of LAB count each week and the freeze-dried Ogi showed progressive reduction in viability. Refrigerated Omidun has little viable LAB, while higher viability was seen in modified Omidun (≥2 log cfu/ml) than normal Omidun. Modified Omidun intervention led to 2-4 log reduction in diarrhoeagenic E. coli strains and total inactivation of shigella-toxin producing E. coli H66D strain in co-culture. Conclusions: The consumption of Ogi should be within 10 days of milling using modified Omidun. There are practical potentials of consumption of Omidun in destroying E. coli strains implicated in diarrhea. Keywords: Ogi, Omidun, lactic acid bacteria, diarrhoeagenic Escherichia coli strains, Viability.


2011 ◽  
Vol 74 (4) ◽  
pp. 631-635 ◽  
Author(s):  
VASILIKI A. BLANA ◽  
AGAPI I. DOULGERAKI ◽  
GEORGE-JOHN E. NYCHAS

Fifteen fingerprints (assigned to Leuconostoc spp., Leuconostoc mesenteroides, Weissella viridescens, Leuconostoc citreum, and Lactobacillus sakei) of 89 lactic acid bacteria (LAB) isolated from minced beef stored under modified atmospheres at various temperatures were screened for their ability to exhibit autoinducer-2 (AI-2)–like activity under certain growth conditions. Cell-free meat extracts (CFME) were collected at the same time as the LAB isolates and tested for the presence of AI-2–like molecules. All bioassays were conducted using the Vibrio harveyi BAA-1117 (sensor 1−, sensor 2+) biosensor strain. The possible inhibitory effect of meat extracts on the activity of the biosensor strain was also evaluated. AI-2–like activity was observed for Leuconostoc spp. isolates, but none of the L. sakei strains produced detectable AI-2–like activity. The AI-2–like activity was evident mainly associated with the Leuconostoc sp. B 233 strain, which was the dominant isolate recovered from storage at 10 and 15°C and at the initial and middle stages of storage at chill temperatures (0 and 5°C). The tested CFME samples displayed low AI-2–like activity and inhibited AI-2 activity regardless of the indigenous bacterial populations. The LAB isolated during meat spoilage exhibited AI-2–like activity, whereas the LAB strains retrieved depended on storage time and temperature. The production of AI-2–like molecules may affect the dominance of different bacterial strains during storage. The results provide a basis for further research concerning the effect of storage temperature on the expression of genes encoding AI-2 activity and on the diversity of the ephemeral bacterial population.


2018 ◽  
Vol 84 (17) ◽  
Author(s):  
Laura Santamaría ◽  
Inés Reverón ◽  
Félix López de Felipe ◽  
Blanca de las Rivas ◽  
Rosario Muñoz

ABSTRACTEthylphenols are strong odorants produced by microbial activity that are described as off flavors in several foods.Lactobacillus plantarumis a lactic acid bacterial species able to produce ethylphenols by the reduction of vinylphenols during the metabolism of hydroxycinnamic acids. However, the reductase involved has not been yet uncovered. In this study, the involvement in vinylphenol reduction of a gene encoding a putative reductase (lp_3125) was confirmed by the absence of reduction activity in the Δlp_3125knockout mutant. The protein encoded bylp_3125, VprA, was recombinantly produced inEscherichia coli. VprA was assayed against vinylphenols (4-vinylphenol, 4-vinylcatechol, and 4-vinylguaiacol), and all were reduced to their corresponding ethylphenols (4-ethylphenol, 4-ethylcatechol, and 4-ethylguaiacol). PCR and high-performance liquid chromatography (HPLC) detection methods revealed that the VprA reductase is not widely distributed among the lactic acid bacteria studied and that only the bacteria possessing thevprAgene were able to produce ethylphenol from vinylphenol. However, all the species belonging to theL. plantarumgroup were ethylphenol producers. The identification of theL. plantarumVprA protein involved in hydroxycinnamate degradation completes the route of degradation of these compounds in lactic acid bacteria.IMPORTANCEThe presence of volatile phenols is considered a major organoleptic defect of several fermented alcoholic beverages. The biosynthesis of these compounds has been mainly associated withBrettanomyces/Dekkerayeasts. However, the potential importance of lactic acid bacteria in volatile phenol spoilage is emphasized by reports describing a faster ethylphenol production by these bacteria than by yeasts. The genetic identification of the bacterial vinylphenol reductase involved in volatile phenol production provides new insights into the role of lactic acid bacteria in the production of these off flavors. The development of a molecular method for the detection of ethylphenol-producing bacteria could be helpful to design strategies to reduce the bacterial production of vinylphenols in fermented foods.


2020 ◽  
Vol 87 (1) ◽  
Author(s):  
Yuanting Zhu ◽  
Jinxin Liu ◽  
Julian M. Lopez ◽  
David A. Mills

ABSTRACT Prebiotics are increasingly examined for their ability to modulate the neonate gut microbiota of livestock, and products such as inulin are commonly added to milk replacer used in calving. However, the ability of specific members of the bovine neonate microbiota to respond to inulin remains to be determined, particularly among indigenous lactobacilli and bifidobacteria, beneficial genera commonly enriched by inulin. Screening of Bifidobacterium and Lactobacillus isolates obtained from fresh feces of dairy calves revealed that lactobacilli had a higher prevalence of inulin fermentation capacity (58%) than bifidobacteria (17%). Several Ligilactobacillus agilis (synonym Lactobacillus agilis) isolates exhibited vigorous growth on, and complete degradation of, inulin; however, the phenotype was strain specific. The most vigorous inulin-fermenting strain, L. agilis YZ050, readily degraded long-chain inulin not consumed by bifidobacterial isolates. Comparative genomic analysis of both L. agilis fermenter and nonfermenter strains indicated that strain YZ050 encodes an inulinase homolog, previously linked to extracellular degradation of long-chain inulin in Lacticaseibacillus paracasei, that was strongly induced during growth on inulin. Inulin catabolism by YZ050 also generates extracellular fructose, which can cross-feed other non-inulin-fermenting lactic acid bacteria isolated from the same bovine feces. The presence of specific inulin-responsive bacterial strains within calf gut microbiome provides a mechanistic rationale for enrichment of specific lactobacilli and creates a foundation for future synbiotic applications in dairy calves aimed at improving health in early life. IMPORTANCE The gut microbiome plays an important role in animal health and is increasingly recognized as a target for diet-based manipulation. Inulin is a common prebiotic routinely added to animal feeds; however, the mechanism of inulin consumption by specific beneficial taxa in livestock is ill defined. In this study, we examined Lactobacillus and Bifidobacterium isolates from calves fed inulin-containing milk replacer and characterized specific strains that robustly consume long-chain inulin. In particular, novel Ligilactobacillus agilis strain YZ050 consumed inulin via an extracellular fructosidase, resulting in complete consumption of all long-chain inulin. Inulin catabolism resulted in temporal release of extracellular fructose, which can promote growth of other non-inulin-consuming strains of lactic acid bacteria. This work provides the mechanistic insight needed to purposely modulate the calf gut microbiome via the establishment of networks of beneficial microbes linked to specific prebiotics.


Sign in / Sign up

Export Citation Format

Share Document