Peel strength characterisation on ply/ply interface using wedge and T-peel/pull-type tests

2018 ◽  
Vol 26 (8-9) ◽  
pp. 431-445 ◽  
Author(s):  
Britto Satheesh ◽  
Maximilian Tonejc ◽  
Larissa Potakowskyj ◽  
Martin Pletz ◽  
Ewald Fauster ◽  
...  

Thermoplastic tapes have found a prominent place in automated tape placement (ATP), due to their reduced processing time. ATP also offers significant reduction in labour; however, the most attractive aspect is the use of its welding properties. Welding or diffusion bonding is necessary for two thermoplastic materials to bond to each other through the combined effect of heating and consolidation pressure. The work published in this article shows how various thermoplastic tape materials with different material properties are bonded to each other using a direct flame-type ATP process. Contact angle and differential scanning calorimetry measurements help understanding of the processing needs of the considered materials. The samples obtained after ATP are sent for peel testing using a wedge peel test principle, so that the force required to separate the bonding is identified. A T-peel test/pull test is also employed to cross-compare peel results obtained through wedge peel testing. The main aim of the work is to study the quality of connection between the two plies with different material interfaces and also how friction might contribute to peel force when wedge peeling is used. A numerical model is also implemented to show the effects of this friction.

2011 ◽  
Vol 415-417 ◽  
pp. 838-841
Author(s):  
Wan Qiang Lu ◽  
Song Xue

Laser tailor-welded blanks is one of the widely used in automotive industries as it reduces manufacturing cost and weight and also improves the quality of the components. The effects of difference in material properties, welding properties on blank formability become important in various forming processes. In this study the welding property of different gauge laser tailor-welded blanks was observed in microhardness and microstructure aspect. The property effects on the formality of the tailor-welded blanks were discussed. That the laser welded joint is qualified to satisfy the demand of sheet forming.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
M. P. Carbonell-Blasco ◽  
M. A. Pérez-Limiñana ◽  
C. Ruzafa-Silvestre ◽  
F. Arán-Ais ◽  
E. Orgilés-Calpena

AbstractPolyurethanes, one of the most used polymers worldwide, are strongly dependent of non-renewable fossil resources. Thus, boosting the production of new polyurethanes based on more sustainable raw materials is crucial to move towards the footwear industry decarbonisation. The aim of this study is to synthesise and characterise reactive hotmelt polyurethanes from biomass and CO2-based polyols as bioadhesives for the footwear industry. The influence of biobased polyols on the polyurethane structure, and therefore, on their final properties was analysed by different experimental techniques such us Fourier transform infrared spectroscopy (FTIR), Differential scanning calorimetry (DSC), Thermogravimetric analysis (TGA), Melting viscosity, Softening temperature and T-peel strength test, in order to assess their viability for the upper to sole bonding process. The results obtained indicated that the incorporation of different amounts of the biobased polyols produces changes in the structure and final performance of the polyurethanes. Therefore, adhesion test carried out by the T-peel test 72 h after the upper -to- sole bonding of the sustainable adhesives show high final adhesion values. These sustainable raw materials provide polyurethane adhesives with additional beneficial non-toxicity and sustainable characteristics, without harming their properties during their useful life.


2021 ◽  
Vol 5 (3) ◽  
pp. 88
Author(s):  
Berend Denkena ◽  
Carsten Schmidt ◽  
Maximilian Kaczemirzk ◽  
Max Schwinn

For achieving high quality of in situ consolidation in thermoplastic Automated Fiber Placement, an approach is presented in this research work. The approach deals with the combination of material pre-heating and sub-ultrasonic vibration treatment. Therefore, this research work investigates the influence of frequency dependent consolidation pressure on the consolidation quality. A simplified experimental setup was developed that uses resistance electrical heating instead of the laser to establish the thermal consolidation condition in a universal testing machine. Consolidation experiments with frequencies up to 1 kHz were conducted. The manufactured specimens are examined using laser scanning microscopy to evaluate the bonding interface and differential scanning calorimetry to evaluate the degree of crystallinity. Additionally, the vibration-assisted specimens were compared to specimens manufactured with static consolidation pressure only. As a result of the experimental study, the interlaminar pore fraction and degree of compaction show a positive dependency to higher frequencies. The porosity decreases from 0.60% to 0.13% while the degree of compaction increases from 8.64% to 12.49% when increasing the vibration frequency up to 1 kHz. The differential scanning calorimetry experiments show that the crystallinity of the matrix is not affected by vibration-assisted consolidation.


2019 ◽  
Vol 809 ◽  
pp. 297-302
Author(s):  
Neha Yadav ◽  
Ralf Schledjewski

For Automated Tape Placement process, degree of bond varies with variation in process parameters and material. Interlaminar bond strength characterization is one of the most important criteria in determining the quality of bond between two layers of thermoplastic tapes. Depending on the bond strength achieved using different process parameters, a process window is defined. Based on the process window an iterative procedure is adopted to find optimum parameters to realize maximum bond strength. This paper aims to investigate the interlaminar bond strength of thermoplastic CF-PA6, during Automated Tape Placement process. A fairly new heating source, a pulsed light solution, i.e. a humm3TM system, which delivers uniform, highly controllable heat to the nip point is used. Experiments were conducted for different process parameters and results obtained using wedge peel test were analyzed. Results acquired help in assessing the material and the heating source in terms of capabilities and efficiency.


2018 ◽  
Vol 188 ◽  
pp. 04013
Author(s):  
Sofia Papanikolaou ◽  
Andreas Maropoulos ◽  
Dimitrios Fasnakis ◽  
Stergios Maropoulos

A test method for the peel resistance of the bonded rubber lining of large of large conveyor belt metal drums is presented that will assist engineer in designing conveyor systems with predetermined specifications. A simple specimen preparation method is developed and the peel strength of the liming is measured using a modified version of the Standard EN 28510-1:2014, 'Adhesives-Peel test for a flexible-bonded-to-rigid test specimen assembly' [1]. The method was applied to various types of samples and it was found that only metal drums where the rubber lining was bonded using hot-vulcanisation under pressure satisfied the condition of the peel force greater than 2 N/m.


2013 ◽  
Vol 583 ◽  
pp. 67-79 ◽  
Author(s):  
Pilar Carbonell-Blasco ◽  
Iulian Antoniac ◽  
Jose Miguel Martin-Martinez

Different polyurethane sealants were prepared by reacting methylene dyísocyanate and polyadipate of 1,4 butane diol (Mw : 2500 daltons) by using the prepolymer method and different mixtures of rosin and 1,4 butane diol were used as chain extenders. The polyurethanes were characterized by plate-plate rheology, molecular weight distribution, Differential Scanning Calorimetry (DSC), and Laser Confocal Microscopy. The tack of the polyurethanes sealants was obtained by using a modified probe tack method, and their adhesion was obtained by T-peel test of leather/polyurethane sealant/leather joints and by single lap-shear tests of aluminium/polyurethane sealant/aluminium joints. Depending on the rosin content in the chain extender the structure of the polyurethanes was different, i.e. more urethane and urethane-amide hard segments were created up to 50 eq% rosin in the chain extender, and separation of domains was prevailing in the polyurethanes with higher rosin content. Furthermore, the addition of rosin caused an increase in the length of the polymer chains and in the storage modulus (particularly in the polyurethane containing 50 eq% rosin), and decrease in the melting enthalpy. Moreover, the crystallinity of the polyurethanes containing up to 50 eq% rosin showed lower number and smaller spherulites, Finally, the tack at 37 °C and the peel strength increased in the joints made with the polyurethane sealants containing rosin whereas the adhesive shear strength decreased when the polyurethane sealant contained 50 eq% rosin or less.


2020 ◽  
Vol 16 ◽  
Author(s):  
Wei Liu ◽  
Shifeng Liu ◽  
Yunzhe Li ◽  
Peng Zhou ◽  
Qian ma

Abstract:: Surgery to repair damaged tissue, which is caused by disease or trauma, is being carried out all the time, and a desirable treatment is compelling need to regenerate damaged tissues to further improve the quality of human health. Therefore, more and more research focus on exploring the most suitable bionic design to enrich available treatment methods. 3D-printing, as an advanced materials processing approach, holds promising potential to create prototypes with complex constructs that could reproduce primitive tissues and organs as much as possible or provide appropriate cell-material interfaces. In a sense, 3D printing promises to bridge between tissue engineering and bionic design, which can provide an unprecedented personalized recapitulation with biomimetic function under the precise control of the composition and spatial distribution of cells and biomaterials. This article describes recent progress in 3D bionic design and the potential application prospect of 3D printing regenerative medicine including 3D printing biomimetic scaffolds and 3D cell printing in tissue engineering.


Nanomaterials ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1406 ◽  
Author(s):  
Yasmin Ranjous ◽  
Géza Regdon ◽  
Klára Pintye-Hódi ◽  
Tamás Varga ◽  
Imre Szenti ◽  
...  

Recently, there has been an increasing interest in the application of nanotubular structures for drug delivery. There are several promising results with carbon nanotubes; however, in light of some toxicity issues, the search for alternative materials has come into focus. The objective of the present study was to investigate the influence of the applied solvent on the composite formation of titanate nanotubes (TNTs) with various drugs in order to improve their pharmacokinetics, such as solubility, stability, and bioavailability. Composites were formed by the dissolution of atenolol (ATN) and hydrochlorothiazide (HCT) in ethanol, methanol, 0.01 M hydrochloric acid or in ethanol, 1M sodium hydroxide, dimethylformamide (DMF), dimethyl sulfoxide (DMSO), respectively, and then they were mixed with a suspension of TNTs under sonication for 30 min and vacuum-dried for 24 h. The structural properties of composites were characterized by SEM, TEM, FT-IR, differential scanning calorimetry (DSC), thermogravimetric (TG) analysis, and optical contact angle (OCA) measurements. Drug release was determined from the fast disintegrating tablets using a dissolution tester coupled with a UV–Vis spectrometer. The results revealed that not only the good solubility of the drug in the applied solvent, but also the high volatility of the solvent, is necessary for an optimal composite-formation process.


Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1955
Author(s):  
Marco Cen-Puc ◽  
Andreas Schander ◽  
Minerva G. Vargas Gleason ◽  
Walter Lang

Polyimide films are currently of great interest for the development of flexible electronics and sensors. In order to ensure a proper integration with other materials and PI itself, some sort of surface modification is required. In this work, microwave oxygen plasma, reactive ion etching oxygen plasma, combination of KOH and HCl solutions, and polyethylenimine solution were used as surface treatments of PI films. Treatments were compared to find the best method to promote the adhesion between two polyimide films. The first selection of the treatment conditions for each method was based on changes in the contact angle with deionized water. Afterward, further qualitative (scratch test) and a quantitative adhesion assessment (peel test) were performed. Both scratch test and peel strength indicated that oxygen plasma treatment using reactive ion etching equipment is the most promising approach for promoting the adhesion between polyimide films.


Sign in / Sign up

Export Citation Format

Share Document