scholarly journals Influence of biobased polyol type on the properties of polyurethane hotmelt adhesives for footwear joints

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
M. P. Carbonell-Blasco ◽  
M. A. Pérez-Limiñana ◽  
C. Ruzafa-Silvestre ◽  
F. Arán-Ais ◽  
E. Orgilés-Calpena

AbstractPolyurethanes, one of the most used polymers worldwide, are strongly dependent of non-renewable fossil resources. Thus, boosting the production of new polyurethanes based on more sustainable raw materials is crucial to move towards the footwear industry decarbonisation. The aim of this study is to synthesise and characterise reactive hotmelt polyurethanes from biomass and CO2-based polyols as bioadhesives for the footwear industry. The influence of biobased polyols on the polyurethane structure, and therefore, on their final properties was analysed by different experimental techniques such us Fourier transform infrared spectroscopy (FTIR), Differential scanning calorimetry (DSC), Thermogravimetric analysis (TGA), Melting viscosity, Softening temperature and T-peel strength test, in order to assess their viability for the upper to sole bonding process. The results obtained indicated that the incorporation of different amounts of the biobased polyols produces changes in the structure and final performance of the polyurethanes. Therefore, adhesion test carried out by the T-peel test 72 h after the upper -to- sole bonding of the sustainable adhesives show high final adhesion values. These sustainable raw materials provide polyurethane adhesives with additional beneficial non-toxicity and sustainable characteristics, without harming their properties during their useful life.

2021 ◽  
Author(s):  
M.P. Carbonell-Blasco ◽  
M.A. Pérez-Limiñana ◽  
C. Ruzafa-Silvestre ◽  
F. Arán-Ais ◽  
E. Orgilés-Calpena

Abstract The implementation of a Circular Economy model, promoted by the increasingly stricter European policies, demands a comprehensive approach to resource efficiency. In this sense, polyurethanes, one of the most used polymers worldwide, are strongly dependent of non-renewable fossil resources. Thus, boosting the production of new polyurethanes / a new polyurethane based on more sustainable raw materials is crucial to move towards the footwear industry decarbonisation. INESCOP, aware of the footwear industry’s environmental impact, focuses on reducing or removing fossil-based raw materials and opts for eco-friendly ones. These sustainable raw materials provide polyurethane adhesives with additional beneficial non-toxicity and sustainable characteristics, without harming their properties during their useful life. Therefore, the aim of this study is to synthesise and characterise reactive hotmelt polyurethanes from biomass and CO2-based polyols as bioadhesives for the footwear industry. The influence of biobased polyols on the polyurethane structure, and therefore, on their final properties was analysed by different experimental techniques in order to assess their viability for the upper to sole bonding process.


Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 284
Author(s):  
Maria Pilar Carbonell Blasco ◽  
María Ángeles Pérez Limiñana ◽  
Carlos Ruzafa Silvestre ◽  
Elena Orgilés Calpena ◽  
Francisca Arán Aís

The aim of this work is to develop sustainable reactive polyurethane hot melt adhesives (HMPUR) for footwear applications based on biobased polyols as renewable resources, where ma-croglycol mixtures of polyadipate of 1,4-butanediol, polypropylene and different biobased polyols were employed and further reacted with 4-4′-diphenylmethane diisocyanate. The different reactive polyurethane hot melt adhesives obtained were characterized with different experimental techniques, such as Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), softening temperature and melting viscosity. Finally, their adhesion properties were measured from T-peel tests on leather/HMPUR adhesives/SBR rubber joints in order to establish the viability of the used biobased polyols and the amount of these polyols that could be added to reactive polyurethane hot melt adhesives satisfactorily to meet the quality requirements of footwear joints. All biobased polyols and percentages added to the polyurethane adhesive formulations successfully met the quality requirements of footwear, being comparable to traditional adhesives currently used in footwear joints in terms of final strength. Therefore, these new sustainable polyurethane adhesives can be considered as suitable and sustainable alternatives to the adhesives commonly used in footwear joints.


2006 ◽  
Vol 514-516 ◽  
pp. 843-847 ◽  
Author(s):  
Cristina Borges Correia ◽  
João C. Bordado

Polyurethane adhesives provide excellent flexibility, impact resistance and durability. Polyurethanes are formed through the reaction of an isocyanate component with polyether or polyester polyols or other active hydrogen compounds. This paper refers to polyurethane adhesives made from polyester polyols with long aliphatic chains (up to 36 carbon atoms) and MDI (diphenylmethane-4,4’-diisocyanate). The polyester polyols have been made from dimer acids obtained from renewable sources and short chain diols. The polyols that were used presented different degrees of unsaturation. The influence of the different raw materials in the adhesives performance is studied. The polyurethanes were produced by reaction between quasi-stoichiometric quantities of polyol and MDI, at several temperatures. The reaction was carried under inert atmosphere and at temperatures below 100°C. Performance of the adhesives was tested by carrying adhesion, hardness and water absorption tests. Characterization of both the polyester polyols and polyurethane adhesives was carried by Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), Magnetic Nuclear Resonance (NMR), X-Ray Diffraction (WAXD), Scanning RMN Imaging of 1H of Stray- Field b (MRI) and Brookfield viscometry.


2012 ◽  
Vol 583 ◽  
pp. 9-13 ◽  
Author(s):  
Qing Wang ◽  
Guang Xue Chen ◽  
Shuang Lian Chen ◽  
Jing Lei Tai ◽  
Qi Feng Chen

A low-viscosity and solvent-free polyurethane adhesive was prepared with mixed polyester, polyether and IPDI as main raw materials. The influences of different moral ratios of polyester and polyether on reaction time, viscosity and water resistance, adhesive strength were researched. The effects of catalysts to adhesive were well discussed. The experimental results showed that polyurethane adhesives composed by mixed polyester and polyether had low viscosity and had better waterproof quality. The adhesives showed the best comprehensive properties when the mole ratio of OHs of polyether to OHs of polyester was 0.3/0.7. Catalysts added to this adhesive could speed the curing reaction, but it reduced the peel strength of the adhesives.


2018 ◽  
Vol 26 (8-9) ◽  
pp. 431-445 ◽  
Author(s):  
Britto Satheesh ◽  
Maximilian Tonejc ◽  
Larissa Potakowskyj ◽  
Martin Pletz ◽  
Ewald Fauster ◽  
...  

Thermoplastic tapes have found a prominent place in automated tape placement (ATP), due to their reduced processing time. ATP also offers significant reduction in labour; however, the most attractive aspect is the use of its welding properties. Welding or diffusion bonding is necessary for two thermoplastic materials to bond to each other through the combined effect of heating and consolidation pressure. The work published in this article shows how various thermoplastic tape materials with different material properties are bonded to each other using a direct flame-type ATP process. Contact angle and differential scanning calorimetry measurements help understanding of the processing needs of the considered materials. The samples obtained after ATP are sent for peel testing using a wedge peel test principle, so that the force required to separate the bonding is identified. A T-peel test/pull test is also employed to cross-compare peel results obtained through wedge peel testing. The main aim of the work is to study the quality of connection between the two plies with different material interfaces and also how friction might contribute to peel force when wedge peeling is used. A numerical model is also implemented to show the effects of this friction.


2013 ◽  
Vol 583 ◽  
pp. 67-79 ◽  
Author(s):  
Pilar Carbonell-Blasco ◽  
Iulian Antoniac ◽  
Jose Miguel Martin-Martinez

Different polyurethane sealants were prepared by reacting methylene dyísocyanate and polyadipate of 1,4 butane diol (Mw : 2500 daltons) by using the prepolymer method and different mixtures of rosin and 1,4 butane diol were used as chain extenders. The polyurethanes were characterized by plate-plate rheology, molecular weight distribution, Differential Scanning Calorimetry (DSC), and Laser Confocal Microscopy. The tack of the polyurethanes sealants was obtained by using a modified probe tack method, and their adhesion was obtained by T-peel test of leather/polyurethane sealant/leather joints and by single lap-shear tests of aluminium/polyurethane sealant/aluminium joints. Depending on the rosin content in the chain extender the structure of the polyurethanes was different, i.e. more urethane and urethane-amide hard segments were created up to 50 eq% rosin in the chain extender, and separation of domains was prevailing in the polyurethanes with higher rosin content. Furthermore, the addition of rosin caused an increase in the length of the polymer chains and in the storage modulus (particularly in the polyurethane containing 50 eq% rosin), and decrease in the melting enthalpy. Moreover, the crystallinity of the polyurethanes containing up to 50 eq% rosin showed lower number and smaller spherulites, Finally, the tack at 37 °C and the peel strength increased in the joints made with the polyurethane sealants containing rosin whereas the adhesive shear strength decreased when the polyurethane sealant contained 50 eq% rosin or less.


Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1955
Author(s):  
Marco Cen-Puc ◽  
Andreas Schander ◽  
Minerva G. Vargas Gleason ◽  
Walter Lang

Polyimide films are currently of great interest for the development of flexible electronics and sensors. In order to ensure a proper integration with other materials and PI itself, some sort of surface modification is required. In this work, microwave oxygen plasma, reactive ion etching oxygen plasma, combination of KOH and HCl solutions, and polyethylenimine solution were used as surface treatments of PI films. Treatments were compared to find the best method to promote the adhesion between two polyimide films. The first selection of the treatment conditions for each method was based on changes in the contact angle with deionized water. Afterward, further qualitative (scratch test) and a quantitative adhesion assessment (peel test) were performed. Both scratch test and peel strength indicated that oxygen plasma treatment using reactive ion etching equipment is the most promising approach for promoting the adhesion between polyimide films.


2009 ◽  
Vol 24 (9) ◽  
pp. 2880-2885 ◽  
Author(s):  
Jing Zhang ◽  
Wei Yan ◽  
Chenguang Bai ◽  
Fusheng Pan

Mg-Li-Al alloy was prepared by ingot casting and then underwent subsequent reactive ball milling. A Mg-Li-Al-H complex hydride was obtained under a 0.4 MPa hydrogen atmosphere at room temperature, and as high as 10.7 wt% hydrogen storage capacity was achieved, with the peak desorption temperature of the initial step at approximately 65 °C. The evolution of the reaction during milling, as well as the effect of Li/Al ratio in the raw materials on the desorption properties of the hydrides formed, were studied by x-ray diffraction and simultaneous thermogravimetry and differential scanning calorimetry techniques. The results showed that mechanical milling increases the solubility of Li in Mg, leading to the transformation of bcc β(Li) solid solution to hcp α(Mg) solid solution, the latter continues to incorporate Li and Al, which stimulates the formation of Mg-Li-Al-H hydride. A lower Li/Al ratio resulted in faster hydrogen desorption rate and a greater amount of hydrogen released at a low temperature range, but sacrificing total hydrogen storage capacity.


2013 ◽  
Vol 787 ◽  
pp. 58-64 ◽  
Author(s):  
Xiang Feng Li ◽  
Zhao Zhang ◽  
Fang Liu ◽  
Shu Ping Zheng

The LiFePO4/C composites with different morphology are synthesized by a novel glucose assisted hydrothermal method at various glucose concentrations (from 0 to 0.25mol/L) and the insoluble lithium source Li2CO3, (NH4)2Fe (SO4)2·6H2O and (NH4)2HPO4(n (Li):n (Fe):n (P)=1:1:1) are used as raw materials. The structure, morphology, thermal performance and electrochemical properties of the synthesized composites are characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), thermogravimetry/differential scanning calorimetry (TG-DSC), galvanostatic charge/discharge tests and cyclic voltammetry (CV). The results show that the LiFePO4/C synthesized with 0.125mol/L glucose has the relatively small particles size (0.1~0.5μm) and the well spherical morphology. The optimal sample exhibits a high discharge capacity of 160.0mAh/g at the first cycle and exhibits a good reversibility and stability in CV tests.


Sign in / Sign up

Export Citation Format

Share Document