Effect of particle sizes on the mechanical behaviour of limestone-reinforced hybrid plastics

2019 ◽  
Vol 28 (6) ◽  
pp. 410-420 ◽  
Author(s):  
R Vinayagamoorthy

The present research has been made to investigate the characteristics of a new composite material made up of limestone as particle reinforcement. New composites are made by taking limestone particles in five different sizes and jute as woven reinforcement in polypropylene matrix. Mechanical characteristics of the composites that include strengths against tension, compression, flexural, impact and hardness are evaluated and a comparative investigation is made among the composites. The effect of particle size on the properties is analysed and found that the composite with medium particle size bears the highest strength in all aspects. In addition, microscopic image analysis is carried out to investigate the distribution of particles, bonding capacity and other morphologies. The results showed that limestone will be apt particle reinforcement and its presence enhances all the characteristics of the composite.

2013 ◽  
Vol 60 (1) ◽  
Author(s):  
Mohd Azizi Che Yunus ◽  
Manzurudin Hasan ◽  
Norasikin Othman ◽  
Siti Hamidah Mohd-Setapar ◽  
Liza Md.-Salleh ◽  
...  

Kajian ini bertujuan untuk mengkaji kesan saiz zarah ke atas pengekstrakan sebatian catechin daripada biji Areca catechu L. dengan menggunakan Pengekstrakan Pelarut Terpecut (PPT). Saiz zarah biji Areca catechu dipelbagaikan dari 75 μm sehingga 500 μm. Pengekstrakan telah dijalankan padaparameter tetap iaitu suhu (140oC), tekanan (1500 psi), masa (10 minit), isipadu semburan (60%) dan satu kitaran pengekstrakan, masing-masing. Hasil minyak peratusan yang lebih tinggi adalah 300 mg minyak / gram sampel (30.00% pati minyak) ditemui pada 125 μm. Walaubagaimanapun, kandungan catechin dalam pati minyak hanya 0.0375 mg catechin / gram sampel. Saiz zarah yang terbaik dalam julat uji kaji ini telah dikenal pasti pada 500 μm yang memberikan kandungan catechin yang tinggi iaitu 0.0515 mg catechin / gram sampel dari 247.5 mg minyak / gram sampel (24.75% pati minyak). Kata kunci: Saiz zarah; catechin; LC-MS-TOF; pengekstrakan pelarut terpecut The purpose of this work is to investigate the effects of particle size on the extraction of catechincompound from Areca catechu L. seeds by using Accelerated Solvent Extraction (ASE). The particle sizes of Areca catechu L. seeds are varied from 75 µm until 500 µm. The extraction is conducted at fixed parameters which are temperature (140oC), pressure (1500 psi), extraction time (10 minutes), flush volume (60%) and the static cycle is done for 1 extraction cycle respectively. Higher percentage oil yield of 300mg oil/gram of sample (30.00% oil yield) is found at 125 µm. However, the amount of catechin in oil yields is only 0.0375 mg of catechin/gram of sample. The best of particle size within the experimental range has been identified at 500 µm which gives a high content of catechin with 0.0515 mg Catechin/gram of sample from 247.5 mg oil/gram of sample (24.75% oil yield). Keywords: Particle size; catechin; LC-MS-TOF; accelerated solvent extraction


TAPPI Journal ◽  
2020 ◽  
Vol 19 (11) ◽  
pp. 585-593
Author(s):  
ETHAN GLOR ◽  
BRIAN EINSLA ◽  
JOHN ROPER ◽  
JIAN YANG ◽  
VALERIY GINZBURG

Hollow sphere pigments (HSPs) are widely used at low levels in coated paper to increase coating bulk and to provide gloss to the final sheet. However, HSPs also provide an ideal system through which one can examine the effect of pigment size and particle packing within a coating due to their unimodal and tunable particle sizes. The work presented in Part 1 and Part 2 of this study will discuss the use of blends of traditional inorganic pigments and HSPs in coating formulations across a variety of applications for improved coating strength. Part 1 of this study focuses on the theory of bimodal spherical packing and demonstrates the predictive nature of packing models on the properties of coating systems containing HSPs of two different sizes. This study also examines conditions where the model fails by examining the effect of particle size on coating strength in sytems like thermal paper basecoats where the non-HSP component has a broad particle size distribution, and how these surprising trends can be used to generate better-than-expected thermal printing performance in systems with low HSP/clay ratios. Part 2 of this study focuses on the incorporation of HSPs of different particle sizes into paperboard formulations to affect coating strength and opacity.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Carola Contreras ◽  
Fernanda Isquierdo ◽  
Pedro Pereira-Almao ◽  
Carlos E. Scott

More than half of the total world oil reserves are heavy oil, extra heavy oil, and bitumen; however their catalytic conversion to more valuable products is challenging. The use of submicronic particles or nanoparticles of catalysts suspended in the feedstock may be a viable alternative to the conversion of heavy oils at refinery level or downhole (in situ upgrading). In the present work, molybdenum sulfide (MoS2) particles with varying diameters (10000–10 nm) were prepared using polyvinylpyrrolidone as capping agent. The prepared particles were characterized by DLS, TEM, XRD, and XPS and tested in the hydrodesulfurization (HDS) of a vacuum gas oil (VGO). A correlation between particle size and activity is presented. It was found that particles with diameters around 13 nm show double the HDS activity compared with the material with micrometric particle sizes (diameter ≈ 10,000 nm).


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Gonzalo Martínez-Barrera ◽  
Enrique Vigueras Santiago ◽  
Susana Hernández López ◽  
Osman Gencel ◽  
Fernando Ureña-Nuñez

Effects of gamma radiation and the polypropylene fibers on compressive properties of polymer concrete composites (PC) were studied. The PCs had a composition of 30 wt% of unsaturated polyester resin and 70 wt% of marble particles which have three different sizes (small, medium, and large). The PCs were submitted to 200, 250, and 300 kGy of radiation doses. The results show that the compressive properties depend on the combination of the polypropylene fiber concentration and the applied radiation dose. The compressive strength value is highest when using medium particle size, 0.1 vol% of polypropylene fibers and 250 kGy of dose; moreover, the compressive modulus decreases when increasing the particle size.


Author(s):  
Jesus Djalma PÉCORA ◽  
Ricardo Gariba SILVA ◽  
Ricardo Novak SAVIOLI ◽  
Luis Pascoal VANSAN

A study was conducted on the hardening time of three Grossman's cements with different powder particle sizes (60, 100 and 150 mesh) using Specification n. 57 of the AMERICAN DENTAL ASSOCIATION1 (1983). The cement obtained from mesh 150 particles showed the longest hardening time (22 minutes), which was different when compared to mesh 60 (17 minutes) and 100 (17 minutes) particles.


2008 ◽  
Vol 31 (2) ◽  
pp. 1-13
Author(s):  
S.V. Manyele ◽  
I.F. Kahemel

An investigation of the effect of particle size on the performance of vegetable oil recovery by solvent extraction is reported. Experiments were conducted using soxhlet extractor, groundnuts and n-hexane. Samples were grouped into mean particle sizes of 0.25, 0.75, 1.3, 3.3, and 7.5 mm using standard sieves. The effect of particle size was studied for extraction time intervals of 1, 2, 3, 4, 5 and 8 hours. The oil yield, oil recovered per kg solvent used, kg solvent lost per unit time, and the rate of extraction (kg oil recovered per hour) decreased with increasing particle size. Meanwhile, the percent of solvent recovered, the ratio of oilrecovered to the total volatile matter driven off and the kg solvent lost per kg oil recovered, increased with increasing particle size. Based on the normalization of averaged extraction-parameters, a mean particle size of 3.3 mm was observed to be the optimum size.


2020 ◽  
pp. 1-19
Author(s):  
Qiuchen Wang ◽  
Qiyu Huang ◽  
Xu Sun ◽  
Jun Zhang ◽  
Soroor Karimi ◽  
...  

Abstract During petroleum production, sand particles can be entrained with the transported carrier fluid despite of any sand exclusion process and erode the inner walls of pipelines. This erosion process may even cause pipe leakage and oil spill. Therefore, investigate the regularities of erosion damage changing with particle sizes and predict erosion behavior under different sizes particles are important to pipeline safety. In this study, slurry erosion experiments are conducted using quartz particles with similar shapes and different sizes ranging from 25 micrometers to 600 micrometers to investigate the effect of particle size on erosion profiles and provide the database for evaluating models. Computational Fluid Dynamics (CFD) is used to simulate the fluid flow and track particles to obtain impact information. Erosion equations then connect the particles' impact information with erosion rate. Finally, the available mechanistic and empirical equations erosion models are evaluated by comparing predicted erosion profile with experimental data. It was found that the local maximum erosion damage increases with particle sizes although the total erosion ratio is not increasing. These changes of erosion profiles can be predicted with acceptable accuracy by available empirical erosion models when particle sizes are no less than 75 micrometers.


2020 ◽  
Vol 10 (20) ◽  
pp. 7225
Author(s):  
Ionica Coțovanu ◽  
Ana Batariuc ◽  
Silvia Mironeasa

Replacement of refined wheat flour with milling fractions of quinoa seeds represents a useful way for the formulation of value-added baked products with beneficial characteristics to consumers. The aim of this study was to assess the chemical composition and physical properties of different particle sizes of quinoa flour on Falling number index (FN) and dough rheological properties determined by Mixolab in a planned research based on design of experiment by using full factorial design. The ash and protein contents were higher in medium particle size, whereas the carbohydrates presented a lower value, this fraction having also the highest water absorption and water retention capacity. The reduction of particles led to an increased swelling capacity and a decreased bulk density. The particle size significantly influenced the FN values in linear and quadratic terms (p < 0.05), showing a decrease with the particle size increasing. Particle size decrease significantly increased water absorption and the rate of protein weakening due to heat (C1–2), whereas starch gelatinization rate (C3–2), starch breakdown rate related to amylase activity (C3–4) and starch retrogradation speed (C5–4) decreased. By increasing the amount of quinoa flour (QF) in wheat flour, the dough stability and the torques C2, C3, C4 and C5 followed a decreased trend, whereas water absorption and dough development time rose. Optimization, determined by particle size and level of QF added in wheat flour based on which of the combination gives the best rheological properties, showed that the composite flour containing 8.98% quinoa flour of medium particle size was the most suitable.


2019 ◽  
Vol 37 (No. 2) ◽  
pp. 120-127
Author(s):  
Hüseyin Boz

The effect of particle size of flour and sugar on the physical, sensorial and textural properties of cookie dough and cookie was investigated. According to the obtained data, both the sugar particle size and the flour particle size in cookie dough affected the hardness, adhesiveness, cohesiveness and springiness of the cookie doughs and this effect was statistically at a significant level (P &lt; 0.01). The energy and force required for the dough extrusion dropped due to the reduction in the particle size of flour, while the reduction in the particle of sugar had the opposite effect. As the sugar and flour particle sizes decreased, the colour of the cookies became darker and the L colour values decreased. While the hardness values of the cookie samples increased with the decrease in the particle size of sugar, it decreased with the decrease in the particle size of flour. It was observed that sugar and flour particle size significantly affect cookie quality in cookie production. The formulation containing sugar and flour fractions below 150 µm has received the highest score in all sensory parameters.


2010 ◽  
Vol 7 (2) ◽  
pp. 57
Author(s):  
Jamaludin Kasim ◽  
Shaikh Abdul Karim Yamani ◽  
Ahmad Firdaus Mat Hedzir ◽  
Ahmad Syafiq Badrul Hisham ◽  
Mohd Arif Fikri Mohamad Adnan

An experimental investigation was performed to evaluate the properties of cement-bonded particleboard made from Sesendok wood. The target board density was set at a standard 1200 kg m·3• The effect of particle size, wood to cement ratio and the addition of sodium silicate and aluminium silicate on the wood cement board properties has been evaluated. A change of particle size from 1.0 mm to 2.0 mm has a significant effect on the mechanical properties, however the physical properties deteriorate. Increasing the wood to cement ratio from 1:2.25 to 1:3 decreases the modulus of rupture (MOR) by 11% and the addition of sodium silicate improves values farther by about 28% compared to the addition of aluminium silicate. The modulus of elasticity (MOE) in general increases with increasing cement content, but is not significantly affected by the addition of sodium silicate or aluminium silicate, although the addition of their mixture (sodium silicate and aluminium silicate) consistently yields greater MOE values. Water absorption and thickness swelling is significantly affected by the inclusion of additives and better values are attained using higher wood to cement ratios.


Sign in / Sign up

Export Citation Format

Share Document