scholarly journals Extracellular vesicles: An overview of biogenesis, function, and role in breast cancer

Tumor Biology ◽  
2017 ◽  
Vol 39 (2) ◽  
pp. 101042831769118 ◽  
Author(s):  
Quan Bin Zha ◽  
Yu Feng Yao ◽  
Zhao Jun Ren ◽  
Xiu Juan Li ◽  
Jin Hai Tang

Extracellular vesicles have emerged as important mediators of intercellular communication and play an active role in cancer, including breast cancer. Despite limited studies, initial observations suggest that these vesicles are important in breast physiology and pathophysiology. We here, in brief, describe their potential use as future biomarkers and therapeutic agents in breast cancer. Extracellular vesicles in blood and breast fluid may have a great potential to detect and predict the presence of breast cancer, and extracellular vesicles modulation may emerge as a therapeutic approach in cancer therapy.


2021 ◽  
Vol 10 ◽  
Author(s):  
Yifan Ma ◽  
Shiyan Dong ◽  
Xuefeng Li ◽  
Betty Y. S. Kim ◽  
Zhaogang Yang ◽  
...  

Extracellular vesicles (EVs) are cell-derived membrane particles that represent an endogenous mechanism for cell-to-cell communication. Since discovering that EVs have multiple advantages over currently available delivery platforms, such as their ability to overcome natural barriers, intrinsic cell targeting properties, and circulation stability, the potential use of EVs as therapeutic nanoplatforms for cancer studies has attracted considerable interest. To fully elucidate EVs’ therapeutic function for treating cancer, all current knowledge about cellular uptake and trafficking of EVs will be initially reviewed. In order to further improve EVs as anticancer therapeutics, engineering strategies for cancer therapy have been widely explored in the last decade, along with other cancer therapies. However, therapeutic applications of EVs as drug delivery systems have been limited because of immunological concerns, lack of methods to scale EV production, and efficient drug loading. We will review and discuss recent progress and remaining challenges in developing EVs as a delivery nanoplatform for cancer therapy.



2019 ◽  
Vol 20 (8) ◽  
pp. 1848 ◽  
Author(s):  
Stefania Raimondo ◽  
Gianluca Giavaresi ◽  
Aurelio Lorico ◽  
Riccardo Alessandro

The development of effective nanosystems for drug delivery represents a key challenge for the improvement of most current anticancer therapies. Recent progress in the understanding of structure and function of extracellular vesicles (EVs)—specialized membrane-bound nanocarriers for intercellular communication—suggests that they might also serve as optimal delivery systems of therapeutics. In addition to carrying proteins, lipids, DNA and different forms of RNAs, EVs can be engineered to deliver specific bioactive molecules to target cells. Exploitation of their molecular composition and physical properties, together with improvement in bio-techniques to modify their content are critical issues to target them to specific cells/tissues/organs. Here, we will discuss the current developments in the field of animal and plant-derived EVs toward their potential use for delivery of therapeutic agents in different pathological conditions, with a special focus on cancer.



2020 ◽  
Vol 35 (2) ◽  
pp. 3-19 ◽  
Author(s):  
Shuli Tang ◽  
Siming Yu ◽  
Jianan Cheng ◽  
Yanqiao Zhang ◽  
Xiaoyi Huang

Extracellular vesicles (EVs), which include exosomes, microvesicles, and apoptotic bodies, are nanosized structures that are secreted by various cells and act as important mediators in intercellular communication. Recent studies have shown that exosomes carrying bioactive molecules are generated from multivesicular bodies and are present in various body fluids. mRNAs and microRNAs (miRNAs) are encapsulated in exosomes and have been found to be involved in multiple pathophysiological processes. Here, we provide a review of tumor-associated exosomal mRNAs and miRNAs and their roles in metastasis and drug resistance. In particular, we emphasize their clinical application potential as diagnostic and prognostic biomarkers of cancer and in cancer therapy.



2021 ◽  
Vol 22 (8) ◽  
pp. 3887
Author(s):  
Maja Kosanović ◽  
Alicia Llorente ◽  
Sofija Glamočlija ◽  
José M. Valdivielso ◽  
Milica Bozic

Renal fibrosis is a complex disorder characterized by the destruction of kidney parenchyma. There is currently no cure for this devastating condition. Extracellular vesicles (EVs) are membranous vesicles released from cells in both physiological and diseased states. Given their fundamental role in transferring biomolecules to recipient cells and their ability to cross biological barriers, EVs have been widely investigated as potential cell-free therapeutic agents. In this review, we provide an overview of EVs, focusing on their functional role in renal fibrosis and signaling messengers responsible for EV-mediated crosstalk between various renal compartments. We explore recent findings regarding the renoprotective effect of EVs and their use as therapeutic agents in renal fibrosis. We also highlight advantages and future perspectives of the therapeutic applications of EVs in renal diseases.



Cancers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 4435
Author(s):  
Hyosuk Kim ◽  
Hochung Jang ◽  
Haeun Cho ◽  
Jiwon Choi ◽  
Kwang Yeon Hwang ◽  
...  

Exosomes are a class of extracellular vesicles, with a size of about 100 nm, secreted by most cells and carrying various bioactive molecules such as nucleic acids, proteins, and lipids, and reflect the biological status of parent cells. Exosomes have natural advantages such as high biocompatibility and low immunogenicity for efficient delivery of therapeutic agents such as chemotherapeutic drugs, nucleic acids, and proteins. In this review, we introduce the latest explorations of exosome-based drug delivery systems for cancer therapy, with particular focus on the targeted delivery of various types of cargoes.



Biomedicines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 107
Author(s):  
Yousef Risha ◽  
Vanessa Susevski ◽  
Nico Hüttmann ◽  
Suttinee Poolsup ◽  
Zoran Minic ◽  
...  

Membrane-derived extracellular vesicles, referred to as microvesicles (MVs), have been proposed to participate in several cancer diseases. In this study, MV fractions were isolated by differential ultracentrifugation from a metastatic breast cancer (BC) cell line MDA-MB-231 and a non-cancerous breast cell line MCF10A, then analyzed by nano-liquid chromatography coupled to tandem mass spectrometry. A total of 1519 MV proteins were identified from both cell lines. The data obtained were compared to previously analyzed proteins from small extracellular vesicles (sEVs), revealing 1272 proteins present in both MVs and sEVs derived from the MDA-MB-231 cell line. Among the 89 proteins unique to MDA-MB-231 MVs, three enzymes: ornithine aminotransferase (OAT), transaldolase (TALDO1) and bleomycin hydrolase (BLMH) were previously proposed as cancer therapy targets. These proteins were enzymatically validated in cells, sEVs, and MVs derived from both cell lines. The specific activity of OAT and TALDO1 was significantly higher in MDA-MB-231-derived MVs than in MCF10A MVs. BLMH was highly expressed in MDA-MB-231-derived MVs, compared to MCF10A MVs. This study shows that MVs carry functional metabolic enzymes and provides a framework for future studies of their biological role in BC and potential in therapeutic applications.



Cancers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 84
Author(s):  
Houssam Aheget ◽  
Loubna Mazini ◽  
Francisco Martin ◽  
Boutaïna Belqat ◽  
Juan Antonio Marchal ◽  
...  

Exosomes are lipid bilayer particles released from cells into their surrounding environment. These vesicles are mediators of near and long-distance intercellular communication and affect various aspects of cell biology. In addition to their biological function, they play an increasingly important role both in diagnosis and as therapeutic agents. In this paper, we review recent literature related to the molecular composition of exosomes, paying special attention to their role in pathogenesis, along with their application as biomarkers and as therapeutic tools. In this context, we analyze the potential use of exosomes in biomedicine, as well as the limitations that preclude their wider application.



2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Pedro Fuentes ◽  
Marta Sesé ◽  
Pedro J. Guijarro ◽  
Marta Emperador ◽  
Sara Sánchez-Redondo ◽  
...  

An amendment to this paper has been published and can be accessed via a link at the top of the paper.



Biomolecules ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 676 ◽  
Author(s):  
Rodrigo A. Acuña ◽  
Manuel Varas-Godoy ◽  
Viviana M. Berthoud ◽  
Ivan E. Alfaro ◽  
Mauricio A. Retamal

Under normal conditions, almost all cell types communicate with their neighboring cells through gap junction channels (GJC), facilitating cellular and tissue homeostasis. A GJC is formed by the interaction of two hemichannels; each one of these hemichannels in turn is formed by six subunits of transmembrane proteins called connexins (Cx). For many years, it was believed that the loss of GJC-mediated intercellular communication was a hallmark in cancer development. However, nowadays this paradigm is changing. The connexin 46 (Cx46), which is almost exclusively expressed in the eye lens, is upregulated in human breast cancer, and is correlated with tumor growth in a Xenograft mouse model. On the other hand, extracellular vesicles (EVs) have an important role in long-distance communication under physiological conditions. In the last decade, EVs also have been recognized as key players in cancer aggressiveness. The aim of this work was to explore the involvement of Cx46 in EV-mediated intercellular communication. Here, we demonstrated for the first time, that Cx46 is contained in EVs released from breast cancer cells overexpressing Cx46 (EVs-Cx46). This EV-Cx46 facilitates the interaction between EVs and the recipient cell resulting in an increase in their migration and invasion properties. Our results suggest that EV-Cx46 could be a marker of cancer malignancy and open the possibility to consider Cx46 as a new therapeutic target in cancer treatment.



Sign in / Sign up

Export Citation Format

Share Document